【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點分別為D、E、F,∠A=80°,點P為⊙O上任意一點(不與E、F重合),則∠EPF=______.
【答案】50°或130°
【解析】
有兩種情況:①當(dāng)P在弧EDF上時,連接OE、OF,求出∠EOF,根據(jù)圓周角定理求出即可;②當(dāng)P在弧EMF上時,∠EPF=∠EMF,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠EMF+∠ENF=180°,代入求出即可.
有兩種情況:
①當(dāng)P在弧EDF上時,∠EPF=∠ENF,連接OE、OF,
∵圓O是△ABC的內(nèi)切圓,∴OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°,
∵∠A=80°,∴∠EOF=360°∠AEO∠AFO∠A=100°,∴∠ENF=∠EPF=∠EOF=50°,
②當(dāng)P在弧EMF上時,∠EPF=∠EMF,∠FPE=∠FME=180°50°=130°.
故答案為:50°或130°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個實數(shù)根.
(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點B順時針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.
(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BE與BF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)如圖2,當(dāng)α=30°時,試判斷四邊形BC1DA的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A、B兩點,其中A點坐標(biāo)為,點,另拋物線經(jīng)過點,M為它的頂點.
求拋物線的解析式;
求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:
(1)(x+2)2=25
(2)x2﹣2x﹣2=0
(3)x2﹣6x﹣16=0
(4)(x﹣2)2﹣(3x+8)2=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-(2m+3)x+m2+2=0.
(1)若方程有實數(shù)根,求實數(shù)m的取值范圍;
(2)若方程的兩個根分別為x1、x2,且滿足x12+x22=31+x1x2,求實數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2經(jīng)過點A(2,1).
(1) 求a的值;
(2) 如圖1,點M為x軸負半軸上一點,線段AM交拋物線于N.若△OMN為等腰三角形,求點N的坐標(biāo);
(3) 如圖2,直線y=kx-2k+3交拋物線于B、C兩點,過點C作CP⊥x軸,交直線AB于點P,請說明點P一定在某條確定的直線上運動,求出這條直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝新中國成立70周年,并體現(xiàn)綠色節(jié)能理念,我市某工廠降低了某種工藝品的成本,兩個月內(nèi)從每件產(chǎn)品成本50元,降低到了每件32元,
(1)請問工廠平均每月降低率為多少?
(2)該工廠將產(chǎn)品投放市場進行實銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(元/件) | …… | 40 | 50 | 60 | 70 | …… |
每天銷售量(件) | …… | 400 | 300 | 200 | 100 | …… |
把上表中、的各組對應(yīng)值作為點的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點,猜想與的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式.
(3)當(dāng)銷售單價定為多少時,工藝廠試銷該工藝品每天活得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AC⊥AB,,AC=2,點D是以AB為直徑的半圓O 上一動點,DE⊥CD交直線AB于點E,設(shè).
(1)當(dāng)時,求弧BD的長;
(2)當(dāng)時,求線段BE的長;
(3)若要使點E在線段BA的延長線上,則的取值范圍是 .(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com