【題目】計算:
(1) ﹣9 +
(2)( ﹣ )÷ + ×2 .
【答案】
(1)解:原式=2 ﹣3 +5 =4
(2)解:原式=( ﹣ )+2 ,
=(4﹣3)+6 ,
=1+6
【解析】(1)根據(jù)二次根式的運算性質(zhì)結(jié)合二次根式的混合運算順序,計算后即可得出結(jié)論;(2)根據(jù)二次根式的運算性質(zhì)結(jié)合二次根式的混合運算順序,計算后即可得出結(jié)論.
【考點精析】利用二次根式的性質(zhì)與化簡和二次根式的混合運算對題目進(jìn)行判斷即可得到答案,需要熟知1、如果被開方數(shù)是分?jǐn)?shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進(jìn)行化簡.2、如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來;二次根式的混合運算與實數(shù)中的運算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的(或先去括號).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,解答問題.
例:若代數(shù)式的值是常數(shù)2,則a的取值范圍 2≤a≤4 .
分析:原式=|a﹣2|+|a﹣4|,而|a|表示數(shù)x在數(shù)軸上的點到原點的距離,|a﹣2|表示數(shù)a在數(shù)軸上的點到數(shù)2的點的距離,所以我們可以借助數(shù)軸進(jìn)行分析.
解:原式=|a﹣2|+|a﹣4|
在數(shù)軸上看,討論a在數(shù)2表示的點左邊;在數(shù)2表示的點和數(shù)4表示的點之間還是在數(shù)4表示的點右邊,分析可得a的范圍應(yīng)是2≤a≤4.
(1)此例題的解答過程了用了哪些數(shù)學(xué)思想?請列舉.
(2)化簡 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組為了測量建筑物AB的高度,他們選取了地面上一點E,測得DE的長度為9米,并以建筑物CD的頂端點C為觀測點,測得點A的仰角為45°,點B的俯角為37°,點E的俯角為30°.
(1)求建筑物CD的高度;
(2)求建筑物AB的高度.
(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73,sin37°≈,tan37°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠甲、乙兩個車間同時開始生產(chǎn)某種產(chǎn)品,產(chǎn)品總?cè)蝿?wù)量為m件,開始甲、乙兩個車間工作效率相同.乙車間在生產(chǎn)一段時間后,停止生產(chǎn),更換新設(shè)備,之后工作效率提高.甲車間始終按原工作效率生產(chǎn).甲、乙兩車間生產(chǎn)的產(chǎn)品總件數(shù)y與甲的生產(chǎn)時間x(時)的函數(shù)圖象如圖所示.
(1)甲車間每小時生產(chǎn)產(chǎn)品 件,a= .
(2)求乙車間更換新設(shè)備之后y與x之間的函數(shù)關(guān)系式,并求m的值.
(3)若乙車間在開始更換新設(shè)備時,增加兩名工作人員,這樣可便更換設(shè)備時間減少0.5小時,并且更換后工作效率提高到原來的2倍,那么兩個車間完成原任務(wù)量需幾小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b的圖象與x軸相交于點A(-2,0),與y軸交于點C,與反比例函數(shù)在第一象限內(nèi)的圖象交于點B(m,n),連結(jié)OB.若S△AOB=6,S△BOC=2.
(1)求一次函數(shù)的表達(dá)式;
(2)求反比例函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各對數(shù)中,互為相反數(shù)的是( 。
A.﹣(﹣3)和+(+3)B.﹣(+3)和+(﹣3)
C.﹣(+3)和+(+3)D.﹣(﹣3)和3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com