【題目】如圖,(1)寫出△ABC的各頂點坐標(biāo);
(2)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
(3)寫出△ABC關(guān)于x軸對稱的三角形的各頂點坐標(biāo).
【答案】(1)A(﹣3,2)、B(﹣4,﹣3)、C(﹣1,﹣1)(2)圖像見解析(3)(﹣3,﹣2)、B(﹣4,3)、C(﹣1,1)
【解析】
(1)根據(jù)圖形可直接寫出各點坐標(biāo);
(2)分別找出A、B、C三點關(guān)于y軸的對稱點,再順次連接即可;
(3)根據(jù)關(guān)于x軸對稱的點的坐標(biāo)特點:橫坐標(biāo)不變、縱坐標(biāo)變相反數(shù)可得答案.
解:(1)A(﹣3,2)、B(﹣4,﹣3)、C(﹣1,﹣1);
(2)如圖所示:
(3)△ABC關(guān)于x軸對稱的三角形的各頂點坐標(biāo)(﹣3,﹣2)、B(﹣4,3)、C(﹣1,1).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新知學(xué)習(xí),若一條線段把一個平面圖形分成面積相等的兩部分,我們把這條段線做該平面圖形的二分線解決問題:
(1)①三角形的中線、高線、角平分線中,一定是三角形的二分線的是_______
②如圖1,已知△ABC中,AD是BC邊上的中線,點E,F分別在AB,DC上,連接EF,與AD交于點G,若則EF_____(填“是”或“不是”)△ABC的一條二分線.并說明理由.
(2)如圖2,四邊形ABCD中,CD平行于AB,點G是AD的中點,射線CG交射線BA于點E,取EB的中點F,連接CF.求證:CF是四邊形ABCD的二分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=6,AC=8,BC=11,任作一條直線將△ABC分成兩個三角形,若其中有一個三角形是等腰三角形,則這樣的直線最多有( )
A.5條B.6條C.7條D.8條
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖:正方形ABCD,將Rt△EFG斜邊EG的中點與點A重合,直角頂點F落在正方形的AB邊上,Rt△EFG的兩直角邊分別交AB、AD邊于P、Q兩點,(點P與點F重合),如圖1所示:
(1)求證:EP2+GQ2=PQ2;
(2)若將Rt△EFG繞著點A逆時針旋轉(zhuǎn)α(0°<α≤90°),兩直角邊分別交AB、AD邊于P、Q兩點,如圖2所示:判斷四條線段EP、PF、FQ、QG之間是否存在什么確定的相等關(guān)系?若存在,證明你的結(jié)論.若不存在,請說明理由;
(3)若將Rt△EFG繞著點A逆時針旋轉(zhuǎn)α(90°<α<180°),兩直角邊所在的直線分別交BA、AD兩邊延長線于P、Q兩點,并判斷四條線段EP、PF、FQ、QG之間存在何種確定的相等關(guān)系?按題意完善圖3,請直接寫出你的結(jié)論(不用證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點D是AB的中點,點E是AB邊上一點.
(1)直線BF垂直于直線CE于點F,交CD于點G(如圖1),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1: ,則大樓AB的高度為________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為6cm的等邊三角形,點D從B點出發(fā)沿B→A方向在線段BA上以a cm/s速度運動,與此同時,點E從線段BC的某個端點出發(fā),以b cm/s速度在線段BC上運動,當(dāng)D到達A點后,D、E運動停止,運動時間為t(秒).
(1)如圖1,若a=b=1,點E從C出發(fā)沿C→B方向運動,連AE、CD,AE、CD交于F,連BF.當(dāng)0<t<6時:
①求∠AFC的度數(shù);
②求的值;
(2)如圖2,若a=1,b=2,點E從B點出發(fā)沿B→C方向運動,E點到達C點后再沿C→B方向運動.當(dāng)t≥3時,連DE,以DE為邊作等邊△DEM,使M、B在DE兩側(cè),求M點所經(jīng)歷的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是高,E、F分別是AB、AC的中點.
(1)AB=6,AC=4,求四邊形AEDF的周長;
(2)EF與AD有怎樣的位置關(guān)系?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,點C的坐標(biāo)為(﹣2,0),點A的坐標(biāo)為(﹣6,3),求點B的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com