【題目】實(shí)驗(yàn)與探究:
()由圖觀察易知關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為,請(qǐng)?jiān)趫D中分別標(biāo)明、關(guān)于直線的對(duì)稱點(diǎn)、的位置,并寫出他們的坐標(biāo):__________、__________.
歸納與發(fā)現(xiàn):
()結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)關(guān)于第一、三象限的角平分線的對(duì)稱點(diǎn)的坐標(biāo)為__________(不必證明).
運(yùn)用與拓廣:
()已知兩點(diǎn)、,試在直線上確定一點(diǎn),使點(diǎn)到、兩點(diǎn)的距離之和最小,并求出點(diǎn)坐標(biāo).
【答案】(),;();().
【解析】試題分析:
(1)觀察圖形寫出點(diǎn)B′、C′的坐標(biāo)即可;
(2)根據(jù)圖形并結(jié)合(1)中所得三組點(diǎn)的坐標(biāo)的特征可知:點(diǎn)P(a,b)關(guān)于直線y=x的對(duì)稱點(diǎn)的坐標(biāo)為P′(a,b);
(3)由(2)中結(jié)論可得點(diǎn)D(-1,-4)關(guān)于直線y=x的對(duì)稱點(diǎn)E′的坐標(biāo)為(-4,-1),在坐標(biāo)系中標(biāo)出點(diǎn)E′,連接DE′交l于點(diǎn)Q,則DE′的長(zhǎng)度就是QD+QE和的最小值,再根據(jù)點(diǎn)D和點(diǎn)E′的坐標(biāo)求出直線DE′的解析式,結(jié)合y=x就可求得點(diǎn)Q的坐標(biāo)了.
試題解析:
(),.
().
()關(guān)于的互對(duì)稱點(diǎn)為,
連接,則直線與交點(diǎn)即為點(diǎn),
設(shè)解析式為,
∴,解得:,
∴,
由:,解之得,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,∠B、∠C的平分線相交于點(diǎn)O,作BO、CO的垂直平分線分別交BC于點(diǎn)E、F.小明說:“E、F是BC的三等分點(diǎn).”你同意他的說法嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,面積為8的矩形ABOC的邊OB、OC分別在x軸、y軸的正半軸上,點(diǎn)A在雙曲線y=的圖象上,且AC=2.
(1)求k值;
(2)矩形BDEF,BD在x軸的正半軸上,F在AB上,且BD=OC,BF=OB.雙曲線交DE于M點(diǎn),交EF于N點(diǎn),求△MEN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于三個(gè)數(shù)a,b,c,M表示a,b,c這三個(gè)數(shù)的平均數(shù),min表示a,b,c這三個(gè)數(shù)中最小的數(shù),如:
M,min=-1;
M,min=;
解決下列問題:
(1) 填空:min{ a, a-1, a+2 }=______________;
(2) 若min=2,則x的取值范圍是______________;
(3) ①若M=min,那么x=______________;
②根據(jù)①,你發(fā)現(xiàn)結(jié)論“若M=min,則______________;(填a,b,c的大小關(guān)系);
③運(yùn)用②解決問題:(寫出求解的過程)
若M=min,
求x+y 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).
△ACB和△DCE的頂點(diǎn)都在格點(diǎn)上,ED的延長(zhǎng)線交AB于點(diǎn)F.
(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】冬季即將來臨,是流感的高發(fā)期,某中學(xué)積極進(jìn)行班級(jí)環(huán)境消毒,總務(wù)處購買甲、乙兩種消毒液共100瓶,購買這兩種消毒液共用780元,其中甲種消毒液共用240元,且乙種消毒液的單價(jià)是甲種消毒液?jiǎn)蝺r(jià)的1.5倍.
(1)求甲、乙兩種消毒液的單價(jià)各為多少元?
(2)該校準(zhǔn)備再次購買這兩種消毒液(不包括已購買的100瓶),共140瓶,且所需費(fèi)用不超過1210元,問甲種消毒液至少要購買多少瓶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中(∠B≠∠C),AB=8 cm,BC=16 cm,點(diǎn)P從點(diǎn)A開始沿邊AB向點(diǎn)B以2 cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C以4 cm/s的速度移動(dòng),如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),經(jīng)幾秒鐘△PBQ與△ABC相似?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.從下列四個(gè)條件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三個(gè)為條件,余下的一個(gè)為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在Rt△ABC中, ∠ACB=90°,CD⊥AB于D.
(1)請(qǐng)直接寫出圖中所有的相似三角形 (2)你能得出CD2=AD·DB嗎?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com