【題目】若二次函數(shù)yax2+bx+ca≠0)的圖象于x軸的交點(diǎn)坐標(biāo)分別為(x1,0),(x2,0),且x1x2,圖象上有一點(diǎn)Mx0,y0)在x軸下方,對(duì)于以下說法:①b24ac0xx0是方程ax2+bx+cy0的解③x1x0x2ax0x1)(x0x2)<0其中正確的是( 。

A.①③④B.①②④C.①②③D.②③

【答案】B

【解析】

①根據(jù)二次函數(shù)圖象與x軸有兩個(gè)不同的交點(diǎn),結(jié)合根的判別式即可得出△=b2-4ac0,①正確;②由點(diǎn)Mx0,y0)在二次函數(shù)圖象上,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出x=x0是方程ax2+bx+c=y0的解,②正確;③分a0a0考慮,當(dāng)a0時(shí)得出x1x0x2;當(dāng)a0時(shí)得出x0x1x0x2,③錯(cuò)誤;④將二次函數(shù)的解析式由一般式轉(zhuǎn)化為交點(diǎn)式,再由點(diǎn)Mx0,y0)在x軸下方即可得出y0=ax0-x1)(x0-x2)<0,④正確.

①∵二次函數(shù)y=ax2+bx+ca0)的圖象于x軸的交點(diǎn)坐標(biāo)分別為(x1,0),(x2,0),且x1x2,
∴方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根,

∴△=b2-4ac0,①正確;

②∵圖象上有一點(diǎn)Mx0,y0),

a+bx0+c=y0,

x=x0是方程ax2+bx+c=y0的解,②正確;

③當(dāng)a0時(shí),∵Mx0,y0)在x軸下方,

x1x0x2;

當(dāng)a0時(shí),∵Mx0y0)在x軸下方,

x0x1x0x2,③錯(cuò)誤;

④∵二次函數(shù)y=ax2+bx+ca0)的圖象于x軸的交點(diǎn)坐標(biāo)分別為(x10),(x2,0),

y=ax2+bx+c=ax-x1)(x-x2),

∵圖象上有一點(diǎn)Mx0,y0)在x軸下方,

y0=ax0-x1)(x0-x2)<0,④正確;

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)有一張矩形紙片ABCD,AB4BC8,點(diǎn)MN分別在矩形的邊AD,BC上,將矩形紙片沿直線MN折疊,使點(diǎn)C落在矩形的邊AD上,記為點(diǎn)P,點(diǎn)D落在G處,連接PC,交MN丁點(diǎn)Q,連接CM

1)求證:PMPN;

2)當(dāng)P,A重合時(shí),求MN的值;

3)若PQM的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC 中,∠ACB90°,∠ABC30°,AC2,將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),點(diǎn)AB的對(duì)應(yīng)點(diǎn)分別為A1、B1,當(dāng)點(diǎn)A1恰好落在AB上時(shí),弧BB1與點(diǎn)A1構(gòu)成的陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】齊齊哈爾市教育局想知道某校學(xué)生對(duì)扎龍自然保護(hù)區(qū)的了解程度,在該校隨機(jī)抽取了部分學(xué)生進(jìn)行問卷,問卷有以下四個(gè)選項(xiàng):A.十分了解;B.了解較多:C.了解較少:D.不了解(要求:每名被調(diào)查的學(xué)生必選且只能選擇一項(xiàng)).現(xiàn)將調(diào)查的結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:

1)本次被抽取的學(xué)生共有_______名;

2)請(qǐng)補(bǔ)全條形圖;

3)扇形圖中的選項(xiàng)“C.了解較少”部分所占扇形的圓心角的大小為_______°;

4)若該校共有名學(xué)生,請(qǐng)你根據(jù)上述調(diào)查結(jié)果估計(jì)該校對(duì)于扎龍自然保護(hù)區(qū)“十分了解”和“了解較多”的學(xué)生共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DBAC,且DB=AC,EAC的中點(diǎn),

1)求證:BC=DE;

2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖像如圖所示,則下列結(jié)論正確的個(gè)數(shù)有(

c0;②b24ac0;③ abc0;④當(dāng)x>-1時(shí),yx的增大而減小.

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,,,是射線上的點(diǎn),連接,將沿直線翻折得

1)如圖①,點(diǎn)恰好在上,求證:

2)如圖②,點(diǎn)在矩形內(nèi),連接,若,求的面積;

3)若以點(diǎn)、為頂點(diǎn)的三角形是直角三角形,則的長為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,ABACBD為⊙O的直徑,過點(diǎn)AAEBD于點(diǎn)E,延長BDAC延長線于點(diǎn)F

1)若AE4,AB5,求⊙O的半徑;

2)若BD2DF,求sinACB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們研究過的圖形中,圓的任何一對(duì)平行切線的距離總是相等的,所以圓是等寬曲線”.除了圓以外,還有一些幾何圖形也是等寬曲線,如勒洛三角形(如圖),它是分別以等邊三角形的每個(gè)頂點(diǎn)為圓心,以邊長為半徑,在另兩個(gè)頂點(diǎn)間畫一段圓弧,三段圓弧圍成的曲邊三角形. 是等寬的勒洛三角形和圓形滾木的截面圖.

有如下四個(gè)結(jié)論:

①勒洛三角形是中心對(duì)稱圖形

②圖中,點(diǎn)上任意一點(diǎn)的距離都相等

③圖中,勒洛三角形的周長與圓的周長相等

④使用截面是勒洛三角形的滾木來搬運(yùn)東西,會(huì)發(fā)生上下抖動(dòng)

上述結(jié)論中,所有正確結(jié)論的序號(hào)是( )

A.①②B.②③C.②④D.③④

查看答案和解析>>

同步練習(xí)冊(cè)答案