如圖所示,P是正方形ABCD的邊CD上任意一點(diǎn),PE⊥BD于E,PF⊥AC于F,則PE+PF=1,求正方形ABCD的面積。

 

             

 

 

【答案】

解:連結(jié)PO

SOPD+SOPC=SDOC

∴PE+PF=OC=1

∴AC=2  ∴S正方形ABCD=×2×2=2

【解析】:由已知正方形ABCD,PE⊥BD于E,PF⊥AC于F,可得四邊形OEPF為矩形,則得PE=OF,又得三角形PFC為等腰直角三角形,則PF=CF,所以得PE+PF=OC=1,即得AO=1,BD=2,從而求出正方形ABCD的面積.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖所示,E是正方形ABCD的邊CD上一點(diǎn),將△AED繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△AFB,則AE與AF有何關(guān)系?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖所示,ABCD是正方形,BE⊥BF,BE=BF,試判斷AE與FC的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,E是正方形ABCD的邊BC延長(zhǎng)線上的點(diǎn),且BC=CE.
(1)四邊形ACED是平行四邊形嗎?說明理由;
(2)如果AC=
2
,請(qǐng)求出四邊形ACED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖所示,E是正方形ABCD中AD邊上的中點(diǎn),BD與CE交于點(diǎn)F.請(qǐng)你根據(jù)圖形判斷AF與BE的位置具有什么關(guān)系?并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,P是正方形ABCD的邊CD上一點(diǎn),∠BAP的角平分線交BC于Q,
試說明AP=DP+BQ.

查看答案和解析>>

同步練習(xí)冊(cè)答案