如圖所示,P是正方形ABCD的邊CD上一點(diǎn),∠BAP的角平分線(xiàn)交BC于Q,
試說(shuō)明AP=DP+BQ.
分析:首先根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠E=∠AQB,∠EAD=∠QAB,進(jìn)而得出∠PAE=∠E,即可得出AP=PE=DP+DE=DP+BQ.
解答:解:將△ABQ繞A逆時(shí)針旋轉(zhuǎn)90°得到△ADE,由旋轉(zhuǎn)的性質(zhì)可得出∠E=∠AQB,
∠EAD=∠QAB,
又∵∠PAE=90°-∠PAQ=90°-∠BAQ=∠DAQ=∠AQB=∠E,
在△PAE中,得AP=PE=DP+DE=DP+BQ.
點(diǎn)評(píng):此題主要考查了旋轉(zhuǎn)的性質(zhì)以及角邊的關(guān)系,根據(jù)已知得出PE=DP+DE是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖所示,E是正方形ABCD的邊CD上一點(diǎn),將△AED繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△AFB,則AE與AF有何關(guān)系?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖所示,ABCD是正方形,BE⊥BF,BE=BF,試判斷AE與FC的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,E是正方形ABCD的邊BC延長(zhǎng)線(xiàn)上的點(diǎn),且BC=CE.
(1)四邊形ACED是平行四邊形嗎?說(shuō)明理由;
(2)如果AC=
2
,請(qǐng)求出四邊形ACED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖所示,E是正方形ABCD中AD邊上的中點(diǎn),BD與CE交于點(diǎn)F.請(qǐng)你根據(jù)圖形判斷AF與BE的位置具有什么關(guān)系?并給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案