【題目】在平面直角坐標系中,二次函數(shù)的圖象與軸正半軸交于點.
求證:該二次函數(shù)的圖象與軸必有兩個交點;
設(shè)該二次函數(shù)的圖象與軸的兩個交點中右側(cè)的交點為點,若,將直線向下平移個單位得到直線,求直線的解析式;
在的條件下,設(shè)為二次函數(shù)圖象上的一個動點,當時,點關(guān)于軸的對稱點都在直線的下方,求的取值范圍.
【答案】解析;直線; 的取值范圍為:.
【解析】
(1)直接利用根的判別式,結(jié)合完全平方公式求出△的符號進而得出答案;
(2)首先求出B,A點坐標,進而求出直線AB的解析式,再利用平移規(guī)律得出答案;
(3)根據(jù)當-3<p<0時,點M關(guān)于x軸的對稱點都在直線l的下方,當p=0時,q=1;當p=-3時,q=12m+4;結(jié)合圖象可知:-(12m+4)≤2,即可得出m的取值范圍.
令,則
,
∵二次函數(shù)圖象與軸正半軸交于點,
∴,且,
又∵,
∴,
∴,
∴該二次函數(shù)的圖象與軸必有兩個交點;
令,
解得:,,
由得,故的坐標為,
又因為,
所以,即,
則可求得直線的解析式為:.
再向下平移個單位可得到直線;
由得二次函數(shù)的解析式為:.
∵為二次函數(shù)圖象上的一個動點,
∴.
∴點關(guān)于軸的對稱點的坐標為.
∴點在二次函數(shù)上.
∵當時,點關(guān)于軸的對稱點都在直線的下方,
當時,;當時,;
結(jié)合圖象可知:,
解得:.
∴的取值范圍為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,在△ABC中,∠C=90°,BC=5cm,AC=7cm. 兩個動點P、Q分別從B、C兩點同時出發(fā),其中點P以1厘米/秒的速度沿著線段BC向點C運動,點Q以2厘米/秒的速度沿著線段CA向點A運動.
(1)P、Q兩點在運動過程中,經(jīng)過幾秒后,△PCQ的面積等于4厘米2?經(jīng)過幾秒后PQ的長度等于5厘米?
(2)在P、Q兩點在運動過程中,四邊形ABPQ的面積能否等于11厘米2?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,∠BAD是△ABC的一個外角,∠BAC、∠BAD的平分線分別交⊙O于點E、F.請你在圖上連接EF.(1)證明:EF是⊙O的直徑;(2)請你判斷EF與BC有怎樣的位置關(guān)系?并請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的圖象如圖所示,下列四個判斷中正確的個數(shù)是( )
①,,;②;③;④.
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條拋物線與軸的交點為、兩點,其頂點在折線上運動.若、、的坐標分別為、、、,點橫坐標的最小值為,則點橫坐標的最大值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于、兩點,與軸交于點,四邊形是矩形,點的坐標為,點的坐標為,已知點是線段上的動點,過點作軸交拋物線于點,交于點,交于點.
求該拋物線的解析式;
當點在直線上方時,請用含的代數(shù)式表示的長度;
在的條件下,是否存在這樣的點,使得以、、為頂點的三角形與相似?若存在,求出此時的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果二次函數(shù)y=x2+(k+2)x+k+5的圖象與x軸的兩個不同交點的橫坐標都是正的,那么k值應(yīng)為( )
A. k>4或k<﹣5 B. ﹣5<k<﹣4 C. k≥﹣4或k≤﹣5 D. ﹣5≤k≤﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標是(20,0),點B的坐標是(16,0),點C、D在以OA為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點C的坐標為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com