精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示的圓柱形容器的容積為81升,它的底面直徑是高的2倍.(π3)

(1)這個圓柱形容器的底面直徑為多少分米?

(2)若這個圓柱形容器的兩個底面與側面都是用鐵皮制作的,則制作這個圓柱形容器需要鐵皮多少平方分米?(不計損耗)

【答案】(1)這個圓柱形容器的底面直徑為6分米;(2)制作這個圓柱形容器需要鐵皮108平方分米.

【解析】

(1)這個圓柱形容器的高為x分米,根據圓柱形容器的體積列方程求解即可;

(2)由圓柱的表面計算公式求解可得答案.

解:(1)設這個圓柱形容器的高為x分米,則它的底面直徑是2x分米,依題意得

,

解得x=3,

∴2x=6,

答:這個圓柱形容器的底面直徑為6分米;

(2)2π×32+2π×3×3=108(平方分米).

答:制作這個圓柱形容器需要鐵皮108平方分米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,正方形ABCD中,E為BC上一點,過B作BG⊥AE于G,延長BG至點F使∠CFB=45°

(1)求證:AG=FG;

(2)如圖2延長FC、AE交于點M,連接DF、BM,若C為FM中點,BM=10,求FD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在數軸上,點A表示1,現將點A沿x軸做如下移動,第一次點A向左移動2個單位長度到達點 A1,第二次將點A1,向右移動4個單位長度到達點A2,第三次將點A2向左移動6個單位長度到達點A3,按照這種移動規(guī)律移動下去,第n次移動到點An,如果點An與原點的距離等于19,那么n的值是__

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠AOB=120°,射線OCOA開始,繞點O逆時針旋轉,旋轉的速度為每分鐘20°;射線ODOB開始,繞點O逆時針旋轉,旋轉的速度為每分鐘5°,OCOD同時旋轉,設旋轉的時間為t(0≤t≤15).

(1)當t為何值時,射線OCOD重合;

(2)當t為何值時,∠COD=90°;

(3)試探索:在射線OCOD旋轉的過程中,是否存在某個時刻,使得射線OCOBOD中的某一條射線是另兩條射線所夾角的角平分線?若存在,請求出所有滿足題意的t的取值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=CD,點E、F分別在邊BC、CD上,且BE=DF=AD,聯結DE,聯結AF、BF分別與DE交于點G、P.
(1)求證:AB=BF;
(2)如果BE=2EC,求證:DG=GE.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內點F處,連接CF,則CF的長為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點G,點F是CD上一點,且滿足 ,連接AF并延長交⊙O于點E,連接AD、DE,若CF=3,AF=4.
(1)求證:△ADF∽△AED;
(2)求FG的長;
(3)求tan∠E的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:

(1)3﹣5﹣(﹣1)﹣3+12﹣(﹣12

(2)|﹣|×[﹣32÷(﹣2+(﹣2)3]

(3)先化簡,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x、y滿足|x﹣|+(y+1)2=0.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點E在CD邊上,點F在DC延長線上,AE=BF.

(1)求證:四邊形ABFE是平行四邊形;

(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長.

查看答案和解析>>

同步練習冊答案