拋物線 y = ax2+bx+c向右平移5個(gè)單位,再向上平移1個(gè)單位,得到的拋物線的解析式為 y = -3 (x -1) 2+4,則拋物線 y = ax2+bx+c的頂點(diǎn)坐標(biāo)是

A.(6,3)       B.(6,5)       C.(-4,3)       D.(-4,5)

 

【答案】

C

【解析】由題意可知原拋物線的解析式為,所以頂點(diǎn)坐標(biāo)是(-4,3)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=x2+ax+a-2
(1)證明:不論a取何值,拋物線y=x2+ax+a-2的頂點(diǎn)Q總在x軸的下方;
(2)設(shè)拋物線y=x2+ax+a-2與y軸交于點(diǎn)C,如果過(guò)點(diǎn)C且平行于x軸的直線與該拋物線有兩個(gè)不同的交點(diǎn),并設(shè)另一個(gè)交點(diǎn)為點(diǎn)D,問(wèn):△QCD能否是等邊三角形?若能,請(qǐng)求出相應(yīng)的二次函數(shù)解析式;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=x2+ax+b與x軸的兩個(gè)不同的交點(diǎn)A、B距原點(diǎn)的距離都大于1小于2,一個(gè)直角三角形的兩條直角邊長(zhǎng)分別為a、b,則斜邊c的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若拋物線y=x2+ax+2b-2(其中a、b為實(shí)數(shù))與x軸交于相異的兩點(diǎn),其中一點(diǎn)的橫坐標(biāo)在0與1之間,另一點(diǎn)的橫坐標(biāo)在1與2之間,則
b-4a-1
的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=-x2+ax+b經(jīng)過(guò)點(diǎn)A(1,0),B(0,-4).
(1)求此拋物線的解析式;
(2)當(dāng)x取何值時(shí),y隨x的增大而增大?
(3)若拋物線與x軸的另一個(gè)交點(diǎn)為C,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案