(2012•包頭)如圖,直線y=
1
2
x-2與x軸、y軸分別交于點A和點B,點C在直線AB上,且點C的縱坐標(biāo)為-1,點D在反比例函數(shù)y=
k
x
的圖象上,CD平行于y軸,S△OCD=
5
2
,則k的值為
3
3
分析:把x=2代入y=
1
2
x-2求出C的縱坐標(biāo),得出OM=2,CM=1,根據(jù)CD∥y軸得出D的橫坐標(biāo)是2,根據(jù)三角形的面積求出CD的值,求出MD,得出D的縱坐標(biāo),把D的坐標(biāo)代入反比例函數(shù)的解析式求出k即可.
解答:解:∵點C在直線AB上,即在直線y=
1
2
x-2上,點C的縱坐標(biāo)為-1,
∴代入得:-1=
1
2
x-2,
解得,x=2,即C(2,-1),
∴OM=2,
∵CD∥y軸,S△OCD=
5
2

1
2
CD×OM=
5
2
,
∴CD=
5
2
,
∴MD=
5
2
-1=
3
2
,
即D的坐標(biāo)是(2,
3
2
),
∵D在雙曲線y=
k
x
上,
∴代入得:k=2×
3
2
=3.
故答案為:3.
點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題、一次函數(shù)、反比例函數(shù)的圖象上點的坐標(biāo)特征、三角形的面積等知識點,通過做此題培養(yǎng)了學(xué)生的計算能力和理解能力,題目具有一定的代表性,是一道比較好的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•包頭)如圖,攔水壩的橫斷面為梯形ABCD,壩頂寬AD=5米,斜坡AB的坡度i=1:3(指坡面的鉛直高度AE與水平寬度BE的比),斜坡DC的坡度i=1:1.5,已知該攔水壩的高為6米.
(1)求斜坡AB的長;
(2)求攔水壩的橫斷面梯形ABCD的周長.
(注意:本題中的計算過程和結(jié)果均保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•包頭)如圖,△ABC內(nèi)接于⊙O,∠BAC=60°,⊙O的半徑為2,則BC的長為
2
3
2
3
(保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•包頭)如圖,在平面直角坐標(biāo)系中,點A在x軸上,△ABO是直角三角形,∠ABO=90°,點B的坐標(biāo)為(-1,2),將△ABO繞原點O順時針旋轉(zhuǎn)90°得到△A1B1O,則過A1,B兩點的直線解析式為
y=3x+5
y=3x+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•包頭)如圖,將△ABC紙片的一角沿DE向下翻折,使點A落在BC邊上的A′點處,且DE∥BC,下列結(jié)論:
①∠AED=∠C;②
A′D
DB
=
A′E
EC
;③BC=2DE;④S四邊形ADA′E=S△DBA′+S△EA′C
其中正確結(jié)論的個數(shù)是
4
4
個.

查看答案和解析>>

同步練習(xí)冊答案