已知拋物線y=ax2+bx+c(a>0)的頂點(diǎn)是C(0,1),直線l:y=-ax+3與這條拋物線交于P、Q兩點(diǎn),與x軸、y軸分別交于點(diǎn)M和N。

(1)設(shè)點(diǎn)P到x軸的距離為2,試求直線l的函數(shù)關(guān)系式;

(2)若線段MP與PN的長(zhǎng)度之比為3:1,試求拋物線的函數(shù)關(guān)系式。

 

【答案】

解:(1)∵拋物線的頂點(diǎn)是C(0,1),∴b=0,c=1,

如圖1,

∵a>0,直線l過(guò)點(diǎn)N(0,3)

∴M點(diǎn)在x軸正半軸上

∵點(diǎn)P到x軸的距離為2,即點(diǎn)P的縱坐標(biāo)為2。

把y=2代入得,

∴P點(diǎn)坐標(biāo)為(,2)      

∵直線與拋物線交于點(diǎn)P

∴點(diǎn)P在上,

∴a=1

∴直線l的函數(shù)關(guān)系式為       

(2)如圖2,若點(diǎn)P在y軸的右邊,記為P1,過(guò)點(diǎn)P1作P1A⊥x軸于A,

,

,即

∵ON=3,,即點(diǎn)P1的縱坐標(biāo)為

代入,得

∴點(diǎn)P1的坐標(biāo)為()       

又∵點(diǎn)P1是直線l與拋物線的交點(diǎn)!帱c(diǎn)P1在拋物線上,

  

∴拋物線的函數(shù)關(guān)系式為    

如圖2,若點(diǎn)P在y軸的左邊,記為P2。作P2B⊥x軸于B

。,

,

,即

∵ON=3,,即點(diǎn)P2的縱坐標(biāo)為

由P2在直線l上可求得    

又∵P2在拋物線上,

    ∴拋物線的函數(shù)關(guān)系式為     

【解析】(1)由于拋物線的頂點(diǎn)為C(0,1),因此拋物線的解析式中b=0,c=1.即拋物線的解析式為y=ax2+1.已知了P到x軸的距離為2,即P點(diǎn)的縱坐標(biāo)為2.可根據(jù)直線l的解析式求出P點(diǎn)的坐標(biāo),然后將P點(diǎn)坐標(biāo)代入拋物線的解析式中即可求得a的值,也就能求出直線l的函數(shù)關(guān)系式.

(2)本題要根據(jù)相似三角形來(lái)求.已知了線段MP與PN的長(zhǎng)度之比為3:1,如果過(guò)P作x軸的垂線,根據(jù)平行線分線段成比例定理即可得出P點(diǎn)的縱坐標(biāo)的值.進(jìn)而可仿照(1)的方法,先代入直線的解析式,然后再代入拋物線中即可求出a的值,也就求出了拋物線的解析式

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線yax2bxc(a>0)經(jīng)過(guò)點(diǎn)B(12,0)和C(0,-6),對(duì)稱軸為x=2.

(1)求該拋物線的解析式.

(2)點(diǎn)D在線段AB上且ADAC,若動(dòng)點(diǎn)PA出發(fā)沿線段AB以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從C出發(fā)沿線段CB勻速運(yùn)動(dòng),問(wèn)是否存在某一時(shí)刻,使線段PQ被直線CD垂直平分?若存在,請(qǐng)求出此時(shí)的時(shí)間t(秒)和點(diǎn)Q的運(yùn)動(dòng)速度;若存在,請(qǐng)說(shuō)明理由.

(3)在(2)的結(jié)論下,直線x=1上是否存在點(diǎn)M,使△MPQ為等腰三角形?若存在,請(qǐng)求出所有點(diǎn)M的坐

標(biāo);若存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(0,3)、B(4,3)、C(1,0).
【小題1】填空:拋物線的對(duì)稱軸為直線x=______,拋物線與x軸的另一個(gè)交點(diǎn)D的坐標(biāo)為______;
【小題2】求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線yax2bxc(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過(guò)A(—1,0)、C(0,—3)兩點(diǎn),與x軸交于另一點(diǎn)B
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對(duì)稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=1上的一動(dòng)點(diǎn),求使∠PCB=90°的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆山東鄒城北宿中學(xué)九年級(jí)3月月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知拋物線y=ax2+bx-4a經(jīng)過(guò)A(-1,0)、C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求拋物線的解析式;
(2)若點(diǎn)D(m,m+1)在第一象限的拋物線上, 求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)的坐標(biāo);
(3)在(2)的條件下,連結(jié)BD,若點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011年浙江省嵊州市九年級(jí)上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題滿分14分)

如圖,已知拋物線yax2bxcx軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3)。設(shè)拋物線的頂點(diǎn)為D,求解下列問(wèn)題:

1.(1)求拋物線的解析式和D點(diǎn)的坐標(biāo);

2.(2)過(guò)點(diǎn)D作DF∥軸,交直線BC于點(diǎn)F,求線段DF的長(zhǎng),并求△BCD的面積;

3.(3)能否在拋物線上找到一點(diǎn)Q,使△BDQ為直角三角形?若能找到,試寫出Q點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案