【題目】如圖,已知O的半徑為1,DEO的直徑,過點DO的切線ADCAD的中點,AEOB點,四邊形BCOE是平行四邊形.

1)求AD的長;

2BCO的切線嗎?若是,給出證明;若不是,說明理由.

【答案】1AD=2

2是,理由見解析

【解析】

1)連接BD,由ED為圓O的直徑,利用直徑所對的圓周角為直角得到DBE為直角,由BCOE為平行四邊形,得到BCOE平行,且BC=OE=1,在直角三角形ABD中,CAD的中點,利用斜邊上的中線等于斜邊的一半求出AD的長即可。

2)連接OB,由BCOD平行,BC=OD,得到四邊形BCDO為平行四邊形,由AD為圓的切線,利用切線的性質(zhì)得到OD垂直于AD,可得出四邊形BCDO為矩形,利用矩形的性質(zhì)得到OB垂直于BC,即可得出BC為圓O的切線。

解:(1)連接BD,則DBE=90°,

四邊形BCOE為平行四邊形,

BCOE,BC=OE=1

RtABD中,CAD的中點,

BC=AD=1。AD=2。

2BCO的切線。證明如下:連接OB,

BCOD,BC=OD,四邊形BCDO為平行四邊形。

ADO的切線,ODAD。

四邊形BCDO為矩形。OBBC。

OBO的半徑,BCO的切線。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進一批單價為4元的日用品.若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù)關(guān)系.

1)試求yx之間的函數(shù)關(guān)系式;

2)當(dāng)銷售價格定為多少時,才能使每月的利潤最大?每月的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B3,0),C0,3)三點.

1)求拋物線的解析式;

2)點M是線段BC上的點(不與B、C重合),過MNMy軸交拋物線于N,若點M的橫坐標(biāo)為m,請用含m的代數(shù)式表示MN的長;

3)在(2)的條件下,連接NBNC,是否存在點m,使△BNC的面積最大?若存在,求m的值和△BNC的面積;若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時,yx的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月國際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場調(diào)研:蝙蝠型風(fēng)箏進價每個為10元,當(dāng)售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:

(1)用表達式表示蝙蝠型風(fēng)箏銷售量y(個)與售價x(元)之間的函數(shù)關(guān)系(12≤x≤30);

(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應(yīng)定為多少?

(3)當(dāng)售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】包河區(qū)發(fā)展農(nóng)業(yè)經(jīng)濟產(chǎn)業(yè),在大圩鄉(xiāng)種植多品種的葡萄.已知某葡萄種植戶李大爺?shù)钠咸殉杀緸?0元,如果在未來40天葡萄的銷售單價(元)與時間(天)之間的函數(shù)關(guān)系式為:,且葡萄的日銷售量(千克)與時間(天)的關(guān)系如下表:

時間/天

1

3

6

10

20

40

日銷售量/千克

118

114

108

100

80

40

(1)請直接寫出之間的變化規(guī)律符合什么函數(shù)關(guān)系?并求在第15天的日銷售量是多少千克?

(2)在后20天(即),請求出哪一天的日銷售利潤最大?日銷售利潤最大為多少?

(3)在實際銷售的前20天中,李大爺決定每銷售1千克水果就捐贈元利潤()給留守貧困兒童作為助學(xué)金,前20天銷售完后李大爺發(fā)現(xiàn),每天扣除捐贈后的日銷售利潤隨時間的增大而增大,請求出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中是拋物線形拱橋,點P處有一照明燈,水面OA寬4 m,以O(shè)為原點,OA所在直線為x軸建立平面直角坐標(biāo)系,已知點P的坐標(biāo)為(3, ).

(1)點P與水面的距離是________m;

(2)求這條拋物線的表達式;

(3)當(dāng)水面上升1 m后,水面的寬變?yōu)槎嗌伲?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)圖象與軸交于A、B軸交于C,OA=2,OB=1 ,OC=4

1.求二次函數(shù)解析式;

2.若點D為拋物線的頂點,求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鐵路MN和公路PQ在點O處交匯,∠QON30°,在點A處有一棟居民樓,AO320m,如果火車行駛時,周圍200m以內(nèi)會受到噪音的影響,那么火車在鐵路MN上沿ON方向行駛時.

1)居民樓是否會受到噪音的影響?請說明理由;

2)如果行駛的速度為72km/h,居民樓受噪音影響的時間為多少秒?

查看答案和解析>>

同步練習(xí)冊答案