【題目】如圖,△ABC中,∠ACB90°,∠B60°,AB4DAB中點(diǎn),CE平分∠ACB,∠DEC30°,則CE_____

【答案】2

【解析】

連接CD,作CH⊥DEH,由直角三角形的性質(zhì)可得CDBDAD2,∠A30°,可得HDHC,由直角三角形的性質(zhì)可得CE2HC2

解:連接CD,作CH⊥DEH

∵∠ACB90°,∠B60°,AB4DAB中點(diǎn),

∴CDBDAD2,∠A=90°-60°30°,

∴∠ACD∠A30°

∵CE平分∠ACB,

∴∠ACE45°,

∴∠DCE15°,

∴∠HDC∠DEC+∠DCE45°,且CH⊥DE,

∴∠HCD∠HDC45°,且CD2

∴HDHC=sin∠HDC·CH

∵∠DEC30°,CH⊥DE

∴CE2CH2

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)為方便游客參觀,在每個(gè)景點(diǎn)均設(shè)置兩條通道,即樓梯和無障礙通道.如圖,已知在某景點(diǎn)P處,供游客上下的樓梯傾斜角為30°(即∠PBA=30°),長度為4m(即PB=4m),無障礙通道PA的傾斜角為15°(即∠PAB=15°).求無障礙通道的長度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin15°≈0.21,cos15°≈0.98

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組請(qǐng)結(jié)合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得____________________;

(Ⅱ)解不等式②,得_______________________;

III)把不等式①和②的解集在數(shù)軸上表示出來:

IV)原不等式組的解集為________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其對(duì)稱軸交拋物線于點(diǎn)D.

1)求拋物線的解析式及點(diǎn)D的坐標(biāo);

2)點(diǎn)Py軸右側(cè)拋物線上一點(diǎn),是否存在點(diǎn)P使?若存在請(qǐng)求出點(diǎn)P坐標(biāo);若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4BC6,點(diǎn)MBC的中點(diǎn).

1)在AM上求作一點(diǎn)E,使ADE∽△MAB(尺規(guī)作圖,不寫作法);

2)在(1)的條件下,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx+6x軸、y軸交于A、B兩點(diǎn),點(diǎn)C在第四象限,BCAB,且BCAB

1)如圖1,求點(diǎn)C的坐標(biāo);

2)如圖2,DBC的中點(diǎn),過DAC的垂線EFACE,交直線ABF,連接CF,點(diǎn)P為射線AD上一動(dòng)點(diǎn),求PF2PC2的值;

3)如圖3,在(2)的條件下,在第二象限過點(diǎn)A作線段AMAB于點(diǎn)A,在線段AB上取一點(diǎn)N,連接MN,使MNBN,在第三象限取一點(diǎn)Q,使∠NMQ90°,連接QC,若QCAB,且QC6AM,設(shè)點(diǎn)P的橫坐標(biāo)為t,△PMQ的面積為s,求st的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)F,C是⊙O上兩點(diǎn),且,連接AC,AF,過點(diǎn)CCDAFAF延長線于點(diǎn)D,垂足為D.

(1)求證:CD是⊙O的切線;

(2)CD=2求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)y1k1x的圖象與反比例函數(shù)y2x0)的圖象相交于點(diǎn)A,2),點(diǎn)B是反比例函數(shù)圖象上一點(diǎn),它的橫坐標(biāo)是3,連接OB,AB,則△AOB的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市實(shí)驗(yàn)中學(xué)計(jì)劃在暑假第二周的星期一至星期五開展暑假社會(huì)實(shí)踐活動(dòng),要求每位學(xué)生選擇兩天參加活動(dòng).

1)甲同學(xué)隨機(jī)選擇連續(xù)的兩天,其中有一天是星期三的概率是   

2)乙同學(xué)隨機(jī)選擇兩天,其中有一天是星期三的概率是多少?(列表或畫樹形圖或列舉)

查看答案和解析>>

同步練習(xí)冊(cè)答案