【題目】如圖,在ABC中,∠C90°,點OAC上,以OA為半徑的⊙OAB于點DBD的垂直平分線交BC于點E,交BD于點F,連接DE

1)判斷直線DE與⊙O的位置關系,并說明理由;

2)若AC3,BC4,OA1,求線段DE的長.

【答案】1)直線DE是⊙O的切線,見解析;(2

【解析】

1)連接OD,根據(jù)線段垂直平分線的性質(zhì)得EDEB,則∠EDB=∠B,結合∠A=∠ODA,利用等量代換計算出∠ODE90°,則ODDE,然后根據(jù)切線的判定定理得到結論;

2)作OHADH,則AHDH,利用∠A的正弦可計算出OH,則AHAD2AH,進而得BF,然后利用∠B的余弦計算出EB,從而得到ED的長.

連接OD,

EF垂直平分BD,

EDEB

∴∠EDB=∠B,

OAOD

∴∠A=∠ODA,

∵∠A+B90°,

∴∠ODA+EDB90°,

∴∠ODE90°,

ODDE,

∴直線DE是⊙O的切線;

2)∵∠C90°,AC3BC4,

AB=5,

OHADH,

OAOD,

AHDH

∵在RtOAB中,sinA,

∴在RtOAH中,sinA,

OH,

AH

AD2AH,

BD5

BFBD,

∵在RtABC中,cosB

RtBEF中,cosB

BE×,

DE= BE=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲騎電動車、乙騎摩托車都從M地出發(fā),沿一條筆直的公路勻速前往N地,甲先出發(fā)一段時間后乙再出發(fā).甲,乙兩人到達N地后均停止騎行,已知M,N兩地相距km,設甲行駛的時間為xh),甲、乙兩人之同的距離為ykm),表示yx函數(shù)關系的圖象如圖所示.請你解決以下問題:

1)求線段BC所在直線的函數(shù)表達式;

2)分別求甲,乙的速度;

3)填空:點A的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過三點,已知

求此拋物線的關系式;

設點是線段上方的拋物線上一動點,過點軸的平行線,交線段于點的面積最大時,求點的坐標;

是拋物線上的一動點,當的面積最大時,請直接寫出使的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點EAD邊上一點,AEED12,連接AC、BE交于點F.SAEF1,則S四邊形CDEF_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】電器專營店的經(jīng)營利潤受地理位置、顧客消費能力等因素的影響,某品牌電腦專營店設有甲、乙兩家分店,均銷售A、B、C、D四種款式的電腦,每種款式電腦的利潤如表1所示.現(xiàn)從甲、乙兩店每月售出的電腦中各隨機抽取所記錄的50臺電腦的款式,統(tǒng)計各種款式電腦的銷售數(shù)量,如表2所示.

1:四種款式電腦的利潤

電腦款式

A

B

C

D

利潤(元/臺)

160

200

240

320

2:甲、乙兩店電腦銷售情況

電腦款式

A

B

C

D

甲店銷售數(shù)量(臺)

20

15

10

5

乙店銷售數(shù)量(臺)8

8

10

14

18

試運用統(tǒng)計與概率知識,解決下列問題:

1)從甲店每月售出的電腦中隨機抽取一臺,其利潤不少于240元的概率為   ;

2)經(jīng)市場調(diào)查發(fā)現(xiàn),甲、乙兩店每月電腦的總銷量相當.現(xiàn)由于資金限制,需對其中一家分店作出暫停營業(yè)的決定,若從每臺電腦的平均利潤的角度考慮,你認為應對哪家分店作出暫停營業(yè)的決定?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線Ly=﹣x+2x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),動點MA點以每秒1個單位的速度沿x軸向左移動.

1)求A、B兩點的坐標;

2)求COM的面積SM的移動時間t之間的函數(shù)關系式;

3)當t為何值時COM≌△AOB,請直接寫出此時t值和M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B在長方形的邊上.

1)用圓規(guī)和無刻度的直尺在長方形的內(nèi)部作∠ABC=∠ABO;(保留作圖痕跡,不寫作法)

2)在(1)的條件下,若BE是∠CBD的角平分線,探索ABBE的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,點A (1, 0),B(0,2),將點B沿x軸正方向平移3個單位長度得到對應點B,點B恰在反比例函數(shù)y (x0)的圖象上.

(1)k的值;

(2)如圖2,將AOB (O為坐標原點)沿AB翻折得到ACB,求點C的坐標;

(3)是否存在這樣的點P,以P為位似中心,將AOB放大為原來的兩倍后得到DEF (DEF∽△AOB,且相似比為2),使得點D、F恰好在反比例函數(shù)y(x0) 的圖象上?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案