【題目】已知:如圖,在正方形ABCD中,G是CD上一點,延長BC到E,使CE=CG,連接BG并延長交DE于F.
(1)求證:△BCG≌△DCE;
(2)將△DCE繞點D順時針旋轉90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說明理由.
【答案】(1)見解析;(2)四邊形E′BGD是平行四邊形.
【解析】
試題分析:(1)由正方形ABCD,得BC=CD,∠BCD=∠DCE=90°,又CG=CE,所以△BCG≌△DCE(SAS).
(2)由(1)得BG=DE,又由旋轉的性質知AE′=CE=CG,所以BE′=DG,從而證得四邊形E′BGD為平行四邊形.
(1)證明:∵四邊形ABCD是正方形,
∴BC=CD,∠BCD=90°.
∵∠BCD+∠DCE=180°,
∴∠BCD=∠DCE=90°.
又∵CG=CE,
∴△BCG≌△DCE.
(2)解:四邊形E′BGD是平行四邊形.理由如下:
∵△DCE繞D順時針旋轉90°得到△DAE′,
∴CE=AE′.
∵CE=CG,
∴CG=AE′.
∵四邊形ABCD是正方形,
∴BE′∥DG,AB=CD.
∴AB﹣AE′=CD﹣CG.
即BE′=DG.
∴四邊形E′BGD是平行四邊形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2;請直接寫出旋轉中心的坐標;
(3)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4,點E在邊AB上,點F在邊CD上,點G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)y=ax2+bx+c的圖象如圖所示,那么關于x的方程ax2+bx+c﹣3=0的根的情況是( )
A.有兩個不相等的實數(shù)根
B.有兩個異號實數(shù)根
C.有兩個相等實數(shù)根
D.無實數(shù)根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3a,兩動點E、F分別從頂點B、C同時開始以相同速度沿BC、CD運動,與△BCF相應的△EGH在運動過程中始終保持△EGH≌△BCF,B、E、C、G在一直線上,△DHE的面積的最小值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校運動會前夕,要選擇256名身高基本相同的女同學組成表演方陣,在這個問題中,最值得關注的是該校所有女生身高的________(填“平均數(shù)”、“中位數(shù)”或“眾數(shù)”).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com