【題目】如圖,在矩形ABCD中,E、F分別是AB、AD的中點(diǎn),連接AC、EC、EF、FC,且EC⊥EF.
(1)求證:△AEF∽△BCE;
(2)若AC=2,求AB的長(zhǎng);
(3)在(2)的條件下,△ABC的外接圓圓心與△CEF的外接圓圓心之間的距離為 .
【答案】(1)見解析;(2)2;(3)
【解析】
(1)利用同角的余角判斷出∠AFE=∠BEC,即可得出結(jié)論;
(2)設(shè)AE=x,AF=y,則BE=x,AB=2x,BC=AD=2y,進(jìn)而利用△AEF∽BCE,得出,即x2=2y2①,再用勾股定理得出(2x)2+(2y)2=(2)2,即x2+y2=3②,聯(lián)立①②即可得出結(jié)論;
(3)先判斷出△ABC的外接圓的圓心是AC的中點(diǎn)與△CEF的外接圓的圓心為CF的中點(diǎn),進(jìn)而得出MN是AF的一半,再用勾股定理求出AD,進(jìn)而得出AF,即可得出結(jié)論.
(1)證明:∵四邊形ABCD是矩形,
∴∠EAF=∠CBE=90°,
∴∠AEF+∠AFE=90°,
∵EC⊥EF,
∴∠FEC=90°,
∴∠AEF+∠BEC=90°,
∴∠AFE=∠BEC,
∵∠EAF=∠CBE=90°,
∴△AEF∽△BCE,
(2)∵四邊形ABCD是矩形,
∴AD=BC,
∵E、F分別是AB、AD的中點(diǎn)
∴AE=BE=AD,
設(shè)AE=x,AF=y,
則BE=x,AB=2x,BC=AD=2y,
∵△AEF∽BCE,
∴,
∴,
∴x2=2y2①,
∵∠B=90°,
∴AB2+BC2=AC2,
∴(2x)2+(2y)2=(2)2,
∴x2+y2=3②,
由①②得,(舍)或(舍)或(舍)或
∴AE=,AF=1,
∵點(diǎn)E是AB的中點(diǎn),
∴AB=2AE=2,
(3)解:如圖,
∵∠CEF=90°,
∴△CEF是直角三角形,
∴△CEF的外接圓的圓心是斜邊CF的中點(diǎn),記作點(diǎn)M,
∴CM=FM,
∵四邊形ABCD是矩形,
∴AD=BC,∠ABC=90°,
∴△ABC是直角三角形,
∴△ABC的外接圓的圓心是斜邊AC的中點(diǎn),記作N,
∴AN=CN,
∵CM=FM,
∴MN=AF,
由(2)知,AB=2,
∵AC=2,
根據(jù)勾股定理得,BC==2,
∴AD=2,
∵點(diǎn)F是AD的中點(diǎn),
∴AF=AD=1,
∴MN=AF=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線l相切.設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當(dāng)直線l與x軸所成銳角為30°,且r1=1時(shí),r2018=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知MN是⊙O的直徑,點(diǎn)Q在⊙O上,將劣弧沿弦MQ翻折交MN于點(diǎn)P,連接PQ,若∠PMQ=16°,則∠PQM的度數(shù)為( )
A.32°B.48°C.58°D.74°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,拋物線y=x2+bx+c過(guò)點(diǎn)A(3,0),B(1,0),交y軸于點(diǎn)C,點(diǎn)P是該拋物線上一動(dòng)點(diǎn),點(diǎn)P從C點(diǎn)沿拋物線向A點(diǎn)運(yùn)動(dòng)(點(diǎn)P不與點(diǎn)A重合),過(guò)點(diǎn)P作PD∥y軸交直線AC于點(diǎn)D.
(1)求拋物線的解析式;
(2)求點(diǎn)P在運(yùn)動(dòng)的過(guò)程中線段PD長(zhǎng)度的最大值;
(3)△APD能否構(gòu)成直角三角形?若能請(qǐng)直接寫出點(diǎn)P坐標(biāo),若不能請(qǐng)說(shuō)明理由;
(4)在拋物線對(duì)稱軸上是否存在點(diǎn)M使|MA﹣MC|最大?若存在請(qǐng)求出點(diǎn)M的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+c與直線y=mx+n交于A(﹣1,p),B(2,q)兩點(diǎn),則不等式ax2+mx+c>n的解集是( )
A.-1<x<2B.x>-1或x<2C.-2<x<1D.x<-2或x>1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC是等邊三角形,點(diǎn)D、E分別在BC、AC上,且CE=BD,BE、AD相交于點(diǎn)F.求證:
(1)△ABD≌△BCE;
(2)△AEF∽△ABE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量一棵樹CD的高度,測(cè)量者在B處立了一根高為2.5m的標(biāo)桿,觀測(cè)者從E處可以看到桿頂A,樹頂C在同一條直線上,若測(cè)得BD=7m,FB=3m,EF=1.6m,則樹高為_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件.
(1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤(rùn)最大;最大值是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com