【題目】某公司為指導(dǎo)某種應(yīng)季商品的生產(chǎn)和銷售,對三月份至七月份該商品的售價和成本進行了調(diào)研,結(jié)果如下:一件商品的售價M()與時間t()的關(guān)系可用一條線段上的點來表示(如圖甲),一件商品的成本Q()與時間t()的關(guān)系可用一段拋物線上的點來表示,其中6月份成本最高(如圖乙).根據(jù)圖象提供的信息解答下面的問題:

(1)一件商品在3月份出售時的利潤是多少元?(利潤=售價-成本)

(2)求出一件商品的成本Q()與時間t()之間的函數(shù)關(guān)系式;

(3)你能求出3月份至7月份一件商品的利潤W()與時間t()之間的函數(shù)關(guān)系式嗎?若該公司能在一個月內(nèi)售出此種商品30 000件,請你計算該公司在一個月內(nèi)最少獲利多少元?

【答案】15元 (23110000

【解析】

(1)根據(jù)圖像即可解答.

(2) 由題意意可設(shè)Q與t之間的關(guān)系式為:,解出a即可解答.

(3) 由題意得,,設(shè),求出W的方程式,再配方即可解答.

解:(1)由圖可知,這件商品六月份出售時的利潤=8-4=4(元);

(2)由題意意可設(shè)Q與t之間的關(guān)系式為:

而(3,1)滿足上面關(guān)系式。則,解得

(3)由題意得,,設(shè),點(3,6),(6,8)滿足此式,

用待定系數(shù)法易得

……

,在5月份時出售這件商品的最低利潤為元,

一個月內(nèi)售出3000件這種商品的最低利潤=3000×=11000(元)

答:一個月內(nèi)售出3000件這種商品的最低利潤是11000元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)平面xOy中,點A坐標(biāo)為,,,ABx軸交于點C,那么ACBC的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=12,經(jīng)過A,D兩點的⊙O與邊BC相切于點E,則⊙O的半徑為( 。

A. 4 B. C. 5 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形ABCD中,AB8,BC6,P是線段BC上一點(P不與B重合),MDB上一點,且BPDM,設(shè)BPx,MBP的面積為y,則yx之間的函數(shù)關(guān)系式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】開口向下的拋物線ya(x1)(x9)x軸交于A、B兩點,與y軸交于點C,若∠ACB90°,則a的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;

(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了調(diào)查八年級學(xué)生參加乒乓、籃球、足球、排球四項體育活動的人數(shù),學(xué)校從八年級隨機抽取了部分學(xué)生進行調(diào)查,根據(jù)調(diào)查結(jié)果制作了如下不完整的統(tǒng)計表、統(tǒng)計圖:

類別

頻數(shù)(人數(shù))

頻率

乒乓

a

0.3

籃球

20

足球

15

b

排球

合計

c

1

請你根據(jù)以上信息解答下列各題:

1a   b   ;c   ;

2)在扇形統(tǒng)計圖中,排球所對應(yīng)的圓心角是   度;

3)若該校八年級共有600名學(xué)生,試估計該校八年級喜歡足球的人數(shù)?.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:梯形ABCD中,AD//BC,ABBCAD=3,AB=6,DFDC分別交射線AB、射線CB于點E、F.

1)當(dāng)點E為邊AB的中點時(如圖1),求BC的長;

2)當(dāng)點E在邊AB上時(如圖2),聯(lián)結(jié)CE,試問:∠DCE的大小是否確定?若確定,請求出∠DCE的正切值;若不確定,則設(shè)AE=x,∠DCE的正切值為y,請求出y關(guān)于x的函數(shù)解析式,并寫出定義域;

3)當(dāng)AEF的面積為3時,求DCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為圓O的直徑,點C為圓O上一點,若∠BAC=∠CAM,過點C作直線l垂直于射線AM,垂足為點D.

(1)試判斷CD與圓O的位置關(guān)系,并說明理由;

(2)若直線lAB的延長線相交于點E,圓O的半徑為3,并且∠CAB=30°,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案