【題目】某班將舉行“數(shù)學(xué)知識(shí)競(jìng)賽”活動(dòng),班長(zhǎng)安排小明購(gòu)買(mǎi)獎(jiǎng)品,下面兩圖是小明買(mǎi)回獎(jiǎng)品時(shí)與班長(zhǎng)的對(duì)話情境:

請(qǐng)根據(jù)上面的信息,解決問(wèn)題:

(1)試計(jì)算兩種筆記本各買(mǎi)了多少本?

(2)請(qǐng)你解釋:小明為什么不可能找回68元?

【答案】(1) 5元筆記本買(mǎi)了25本,8元筆記本買(mǎi)了15本 (2)不可能找回68

【解析】試題分析:(1)解法一:設(shè)5元、8元的筆記本分別買(mǎi)本,本,

依題意,得:,解得:.

答:5元和8元筆記本分別買(mǎi)了25本和15.

解法二:設(shè)買(mǎi)5元的筆記本,則買(mǎi)(40)本8元筆記本,依題意,得:

,解得:=25.

答::5元和8元筆記本分別買(mǎi)了25本和15.

2)解法一:應(yīng)找回的錢(qián)款為3005×258×15=55≠68,故不能找回68.

解法二:設(shè)買(mǎi)5元的筆記本,則買(mǎi)8元的筆記本.依題意,得:,解得.是正整數(shù),所以不合題意,應(yīng)舍去,故不能找回68.

解法三:買(mǎi)255元的筆記本和158元的筆記本的價(jià)錢(qián)總數(shù)應(yīng)為奇數(shù)而不是偶數(shù),故不能找回68.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上有A,B,C三個(gè)點(diǎn),分別表示有理數(shù)﹣24,﹣10,10,動(dòng)點(diǎn)PA出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

(1)用含t的代數(shù)式表示點(diǎn)PA的距離:PA=   ;點(diǎn)P對(duì)應(yīng)的數(shù)是   ;

(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),若P、Q同時(shí)出發(fā),求:當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P和點(diǎn)Q間的距離為8個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大樹(shù)AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時(shí)間后他到達(dá)點(diǎn)E,此時(shí)他仰望兩棵大樹(shù)的頂點(diǎn)AD,兩條視線的夾角正好為90°,且EA=ED.已知大樹(shù)AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時(shí)間是(

A. 13s B. 8s C. 6s D. 5s

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為t(s).

(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=1時(shí),△ACP與△BPQ是否全等,請(qǐng)說(shuō)明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;

(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x cm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=5,在CD上任取一點(diǎn)E,連接BE,將△BCE沿BE折疊,使點(diǎn)C恰好落在AD邊上的點(diǎn)F處,則CE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)EF分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BPEF于點(diǎn)Q,對(duì)于下列結(jié)論:①EF=2BE②PF=2PE;③FQ=4EQ④△PBF是等邊三角形.其中正確的是( )

A. ①② B. ②③ C. ①③ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列推理過(guò)程,將空白部分補(bǔ)充完整.

(1)如圖1,∠ABC=∠A1B1C1,BD,B1D1分別是∠ABC,∠A1B1C1的角平分線,對(duì)∠DBC=∠D1B1C1進(jìn)行說(shuō)理.

理由:因?yàn)锽D,B1D1分別是∠ABC,∠A1B1C1的角平分線

所以∠DBC=   ,∠D1B1C1=   (角平分線的定義)

又因?yàn)?/span>∠ABC=∠A1B1C1

所以∠ABC=∠A1B1C1

所以∠DBC=∠D1B1C1   

(2)如圖2,EF∥AD,∠1=∠2,∠B=40°,求CDG的度數(shù).

因?yàn)镋F∥AD,

所以∠2=      

又因?yàn)?/span>∠1=∠2 (已知)

所以∠1=   (等量代換)

所以AB∥GD(   

所以∠B=      

因?yàn)?/span>B=40°(已知)

所以∠CDG=   (等量代換)

(3)下面是積的乘方的法則“的推導(dǎo)過(guò)程,在括號(hào)里寫(xiě)出每一步的依據(jù).

因?yàn)椋?/span>ab)n=   

=   

=anbn   

所以(ab)n=anbn

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y= 的圖象上.若點(diǎn)B在反比例函數(shù)y= 的圖象上,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A、B、C,完成下列問(wèn)題:

(1)將點(diǎn)B向右移動(dòng)六個(gè)單位長(zhǎng)度到點(diǎn)D,在數(shù)軸上表示出點(diǎn)D.

(2)在數(shù)軸上找到點(diǎn)E,使點(diǎn)EBA的中點(diǎn)(EA、C兩點(diǎn)的距離相等),井在數(shù)軸上標(biāo)出點(diǎn)E表示的數(shù),求出CE的長(zhǎng).

(3)O為原點(diǎn),取OC的中點(diǎn)M,分OC分為兩段,記為第一次操作:取這兩段OM、CM的中點(diǎn)分別為了N1、N2,將OC分為4段,記為第二次操作,再取這兩段的中點(diǎn)將OC分為8段,記為第三次操作,第六次操作后,OC之間共有多少個(gè)點(diǎn)?求出這些點(diǎn)所表示的數(shù)的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案