【題目】已知二次函數(shù)yax2+bx+c的圖象如圖所示,下列結(jié)論:①ac0,②b2a0③b24ac0,④ab+c0,正確的是( )

A.①②B.①④C.②③D.②④

【答案】A

【解析】

由拋物線的開口方向判斷a0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對所給結(jié)論進(jìn)行判斷.

①圖象開口向下,與y軸交于正半軸,能得到:a0c0,

ac0,故①正確;

②∵對稱軸x<﹣1,

<﹣1,-2a0,

b2a,

b2a0,故②正確;

③圖象與x軸有2個不同的交點(diǎn),依據(jù)根的判別式可知b24ac0,故③錯誤;

④當(dāng)x=﹣1時,y0,∴ab+c0,故④錯誤,

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本價為20/千克,經(jīng)市場調(diào)查,每天銷售量y(千克)與銷售單價x(元千克)之間的關(guān)系如圖所示,規(guī)定每千克售價不能低于30元,且不高于80元.

(1)直接寫出yx之間的函數(shù)關(guān)系式;

(2)如果該超市銷售這種商品每天獲得3900元的利潤,那么該商品的銷售單價為多少元?

(3)設(shè)每天的總利潤為w元,當(dāng)銷售單價定為多少元時,該超市每天的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于AB兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C05),另拋物線經(jīng)過點(diǎn)(1,8),M為它的頂點(diǎn).

1)求拋物線的解析式;

2)求△MCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸正半軸交于點(diǎn)A3,0).以OA為邊在軸上方作正方形OABC,延長CB交拋物線于點(diǎn)D,再以BD為邊向上作正方形BDEF,則= ,點(diǎn)E的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知二次函數(shù).

(1)寫出其頂點(diǎn)坐標(biāo)為 ,對稱軸為 ;

(2)在右邊平面直角坐標(biāo)系內(nèi)畫出該函數(shù)圖像;

(3)根據(jù)圖像寫出滿足的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+2的圖象交x軸于點(diǎn)A(﹣1,0),點(diǎn)B4,0)兩點(diǎn),交y軸于點(diǎn)C.動點(diǎn)M從點(diǎn)A出發(fā),以每秒2個單位長度的速度沿AB方向運(yùn)動,過點(diǎn)MMNx軸交直線BC于點(diǎn)N,交拋物線于點(diǎn)D,連接AC,設(shè)運(yùn)動的時間為t秒.

1)求二次函數(shù)yax2+bx+2的表達(dá)式;

2)連接BD,當(dāng)t時,求DNB的面積;

3)在直線MN上存在一點(diǎn)P,當(dāng)PBC是以∠BPC為直角的等腰直角三角形時,求此時點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),所調(diào)查的部分?jǐn)?shù)據(jù)如表:

銷售單價(元)

60

65

70

銷售量(件)

60

55

50

1)求出之間的函數(shù)表達(dá)式;

2)若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少?

3)銷售單價定為多少元時,該商場獲得的利潤恰為元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船位于碼頭M的南偏東45°方向,距離碼頭120海里的B處,漁船從B處沿正北方向航行一段距離后,到達(dá)位于碼頭北偏東60°方向的A處.

1)求漁船從BA的航行過程中與碼頭M之間的最小距離.

2)若漁船以20海里/小時的速度從A沿AM方向行駛,求漁船從A到達(dá)碼頭M的航行時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等腰直角三角形,AC=BC=2,以斜邊AB上的點(diǎn)O為圓心的圓分別與AC、BC相切于點(diǎn)D、E,與AB分別相交于點(diǎn)G、H,且DG的延長線與CB的延長線交于點(diǎn)F,分析下列四個結(jié)論:①HG=2;②BG=BF;③AH=BG=;④CF= .其中正確的結(jié)論個數(shù)有( )

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案