(6分) 如圖,在平面直角坐標(biāo)系中,直線l是第一、三象限的角平分線
實(shí)驗(yàn)與探究:

【小題1】(1)由圖觀察易知A(0,2)關(guān)于直線l的對(duì)稱點(diǎn)的坐標(biāo)為(2,0),請(qǐng)?jiān)趫D中分別標(biāo)明B(5,3)、C(-2,5) 關(guān)于直線l的對(duì)稱點(diǎn)、的位置,并寫出他們的坐標(biāo):             、             ;
歸納與發(fā)現(xiàn):
【小題2】(2)結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)P(a,b)關(guān)于第一、三象限的角平分線l的對(duì)稱點(diǎn)的坐標(biāo)為           
運(yùn)用與拓廣:
【小題3】(3)已知兩點(diǎn)D(1,-3)、E(-1,-4),試在直線l上確定一點(diǎn)Q,使點(diǎn)QDE兩點(diǎn)的距離之和最小,并求出Q點(diǎn)坐標(biāo).

【小題1】(1)如圖:
【小題2】(2)  (b,a)
【小題3】(3)由(2)得,D(1,-3) 關(guān)于直線l的對(duì)稱點(diǎn)
的坐標(biāo)為(-3,1),連接E交直線l于點(diǎn)Q,此時(shí)點(diǎn)QD、E兩點(diǎn)的距離之和最小
設(shè)過(-3,1)、E(-1,-4)的設(shè)直線的解析式為,則
   ∴
   得  ∴所求Q點(diǎn)的坐標(biāo)為,)解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,它的縱坐標(biāo)是橫坐標(biāo)的2倍,反比例函數(shù)y=
8x
的圖象經(jīng)過點(diǎn)A.正比例函數(shù)y=kx的圖象繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°后,恰好經(jīng)過點(diǎn)A,求k的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)B的坐  標(biāo)為(6,n).線段OA=5,E為x軸上一點(diǎn),且sin ∠AOE=

1.求該反比例函數(shù)和一次函數(shù)的解析式

2.求△AOC的面積

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市豐臺(tái)區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,它的縱坐標(biāo)是橫坐標(biāo)的2倍,反比例函數(shù)的圖象經(jīng)過點(diǎn)A.正比例函數(shù)y=kx的圖象繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°后,恰好經(jīng)過點(diǎn)A,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與y軸交于點(diǎn)A,

與x軸交于點(diǎn)B,與反比例函數(shù)的圖象分別交于點(diǎn)M,N,已知△AOB的面積為1,點(diǎn)M的縱坐

標(biāo)為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出時(shí)x的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆湖南省八年級(jí)反比例函數(shù)測(cè)試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)B的坐  標(biāo)為(6,n).線段OA=5,E為x軸上一點(diǎn),且sin ∠AOE=

1.求該反比例函數(shù)和一次函數(shù)的解析式

2.求△AOC的面積

 

查看答案和解析>>

同步練習(xí)冊(cè)答案