如圖,在平面直角坐標系中,一次函數(shù)的圖象與y軸交于點A,

與x軸交于點B,與反比例函數(shù)的圖象分別交于點M,N,已知△AOB的面積為1,點M的縱坐

標為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出時x的取值范圍。

 

【答案】

(1)y1= x+1,(2)x<-2或0<x<4

【解析】解:(1)∵一次函數(shù)的圖象與y軸交于點A,與x軸交于點B,

∴A(0,1),B( ,0)。

∵△AOB的面積為1,∴×OB×OA=1,即!。

∴一次函數(shù)的解析式為y1= x+1。

∵點M在直線y1上,∴當y=2時,x+1=2,解得x=-2。∴M的坐標為(-2,2)

又∵點M在反比例函數(shù)的圖象上,∴k2=-2×2=-4,

∴反比例函數(shù)的解析式為。

(2)當y1>y2時,x<-2或0<x<4。

(1)先由一次函數(shù)的解析式求出點A與點B的坐標,再根據(jù)△AOB的面積為1,可得到k1的值,

從而求出一次函數(shù)的解析式;得到點M的坐標,然后運用待定系數(shù)法即可求出反比例函數(shù)的解析式。

(2)y1>y2即一次函數(shù)值大于反比例函數(shù)值,只需觀察一次函數(shù)的圖象落在反比例函數(shù)的圖象的

上方時自變量的取值范圍即可,為此,先求出它們的交點坐標,再根據(jù)函數(shù)圖象,可知在在點M的左邊以及原點和點N之間的區(qū)間,y1>y2

解方程組 ,

∴當y1>y2時,x<-2或0<x<4。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案