2.計(jì)算:
(1)$\root{3}{8}$-|-$\root{3}{8}$|-($\sqrt{3}-\sqrt{5}$)-|$\sqrt{5}$-2|
(2)-12-(-2)3×$\frac{1}{8}$-$\root{3}{27}$×|-$\frac{1}{3}$|+2÷($\sqrt{2}$)2

分析 (1)原式利用立方根定義,絕對值的代數(shù)意義化簡,計(jì)算即可得到結(jié)果;
(2)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘除運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果.

解答 解:(1)原式=2-2-$\sqrt{3}$+$\sqrt{5}$-$\sqrt{5}$+2=2-$\sqrt{3}$;
(2)原式=-1+1-1+1=0.

點(diǎn)評 此題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.計(jì)算:$\sqrt{\frac{1}{9}}$+$\root{3}{\frac{26}{27}-1}$+|$\sqrt{3}$-2|-$\sqrt{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.某特警部隊(duì)為了選拔“神槍手”,舉行了2000米設(shè)計(jì)比賽,最后由甲、乙兩名戰(zhàn)士進(jìn)入決賽,在相同條件下,兩人各射靶20次,經(jīng)過統(tǒng)計(jì)計(jì)算,甲、乙兩名戰(zhàn)士的總成績都是99.88環(huán),甲的方差是0.28,乙的方差是0.21,則下列說法中,正確的是( 。
A.甲的成績比乙的成績穩(wěn)定B.乙的成績比甲的成績穩(wěn)定
C.甲、乙兩人成績的穩(wěn)定性相同D.無法確定誰的成績更穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四邊形ABCD是矩形,點(diǎn)E在CD邊上,點(diǎn)F在DC延長線上,AE=BF.
(1)求證:四邊形ABFE是平行四邊形;
(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=kx(k>0)與反比例函數(shù)y=$\frac{3}{x}$的圖象分別交于A、C兩點(diǎn),已知點(diǎn)B與點(diǎn)D關(guān)于坐標(biāo)原點(diǎn)O成中心對稱,且點(diǎn)B的坐標(biāo)為(m,0).其中m>0.
(1)四邊形ABCD的是平行四邊形.(填寫四邊形ABCD的形狀)
(2)當(dāng)點(diǎn)A的坐標(biāo)為(n,3)時,四邊形ABCD是矩形,求m,n的值.
(3)試探究:隨著k與m的變化,四邊形ABCD能不能成為菱形?若能,請直接寫出k的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.計(jì)算:
(1)解不等式,并把解集在數(shù)軸上表示出來,$\frac{1-3x}{2}$≥1-2x;
(2)分解因式:a3-4a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.計(jì)算:
(1)(-1)2015+(π-3)0+${(\frac{1}{2})^{-1}}-\sqrt{{{(1-\sqrt{2})}^2}}$
(2)$\sqrt{3}(\sqrt{2}-\sqrt{3})-\sqrt{24}$-|$\sqrt{6}$-3|
(3)(3$\sqrt{12}$-2$\sqrt{\frac{1}{3}}$+$\sqrt{48}$)÷2$\sqrt{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.計(jì)算:(3x-2)(2x+3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.將點(diǎn)A(x,1-y)向下平移5個單位長度得到點(diǎn)B(1+y,x),則點(diǎn)(x,y)在平面直角坐標(biāo)系的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案