【題目】如圖,矩形ABCD的長為6,寬為3,點O1為矩形的中心,⊙O2的半徑為1,O1O2⊥AB于點P,O1O2=6.若⊙O2繞點P按順時針方向旋轉360°,在旋轉過程中,⊙O2與矩形的邊只有一個公共點的情況一共出現(xiàn)(  )

A.3次
B.4次
C.5次
D.6次

【答案】B
【解析】解答:如圖,⊙O2與矩形的邊只有一個公共點的情況一共出現(xiàn)4次,故選:B.

本題考查了直線與圓的位置關系,解題的關鍵是了解當圓與直線相切時,點到圓心的距離等于圓的半徑.
【考點精析】本題主要考查了直線與圓的三種位置關系的相關知識點,需要掌握直線與圓有三種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于實數(shù)a,b,定義min{a,b}的含義為:當a≥b時,min{a,b}=b;當a<b時,min{a,b}=a.

例如:min{1,-2}=-2 ,min{-3,-3}=-3.

(1)填空:min{-1,-4}= ;min{, }= ;

(2)min{,0};

(3)已知min{-2k +5,-1}=-l,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,BC=2AB=4,AE平分∠BAD交邊BC于點E,∠AEC的分線交AD于點F,以點D為圓心,DF為半徑畫圓弧交邊CD于點G,求弧FG的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用大小相同的小立方塊搭成一個幾何體,使得從正面和上面看到的幾何體的形狀圖如圖19所示.

(1)這樣的幾何體只有一種嗎?它最少需要多少個小立方塊?最多需要多少個小立方塊?

(2)畫出這兩種情況下從左面看到的幾何體的形狀圖.(各畫出一種即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=15,BC=14,AC=13,求ABC的面積.

某學習小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.

思路:(1) ADBCD,設BD = x,用含x的代數(shù)式表示CD;(2)根據(jù)勾股定理,利用AD作為橋梁,建立方程模型,求出x;(3)利用勾股定理求出AD的長,再計算三角形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一名足球守門員練習折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10

(1)守門員最后是否回到了球門線的位置?

(2)在練習過程中,守門員離開球門最遠距離是多少米?

(3)守門員全部練習結束后,他共跑了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑OC=5cm,直線l⊥OC,垂足為H,且l交⊙O于A、B兩點,AB=8cm,求l沿OC所在直線向下平移多少cm時與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,AB DC , BC=b,AB=AC=AD=a,如圖24-1-4-11,求BD的長.

圖24-1-4-11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC繞點A順時針旋轉90°得到(點B′與點B是對應點,點C′與點C是對應點),連接CC′,則∠CC′B′的度數(shù)是( 。

A.45°
B.30°
C.25°
D.15°

查看答案和解析>>

同步練習冊答案