一次函數(shù)的圖象過點(1,2),且y隨x減小,請寫出一個滿足條件的解析式是
 
考點:一次函數(shù)的性質(zhì)
專題:開放型
分析:設(shè)一次函數(shù)的解析式為y=kx+b,根據(jù)一次函數(shù)的性質(zhì)得k<0,取k=-1,然后把(1,2)代入y=-x+b可求出b.
解答:解:設(shè)一次函數(shù)的解析式為y=kx+b,
∵y隨x減小,
∴k可取-1,
把(1,2)代入y=-x+b得-1+b=2,解得b=3,
∴滿足條件的解析式可為y=-x+3.
故答案為y=-x+3.
點評:本題考查了一次函數(shù)y=kx+b的性質(zhì):k>0,y隨x的增大而增大,函數(shù)從左到右上升;k<0,y隨x的增大而減小,函數(shù)從左到右下降.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作,在余下的四邊形紙片中再剪去一個菱形,余下一個四邊形,稱為第二次操作,…依此類推,若第n次余下的四邊形是菱形,則稱原平行四邊形為n階準(zhǔn)菱形,如圖1,?ABCD中,若AB=1,BC=2,則?ABCD為1階準(zhǔn)菱形.
(1)判斷與推理:
①鄰邊長分別為2和3的平行四邊形是
 
階準(zhǔn)菱形;
②小明為了得剪去一個菱形,進(jìn)行如下操作:如圖2,把?ABCD沿BE折疊(點E在AD上),使點A落在邊上的點F,得到四邊形,請證明四邊形是菱形.
(2)操作、探究、計算:
已知的邊長分別為1,a(a>1)且是3階準(zhǔn)菱形,請畫出?ABCD及裁剪線的示意圖,并在下方寫出的a值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程2y2-2
3
y=-1的兩根分別為y1,y2,則
1
y12
+
1
y22
的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若|2x+1|與
1
8
y+4x
互為相反數(shù),則-xy的平方根的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是邊長為2的等邊三角形,D為AB邊的中點,以CD為直徑畫圓,則圖中影陰部分的面積為
 
(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把一個半圓卷成圓錐的側(cè)面,則這個圓錐母線之間最大的夾角為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在式子
1
a
,
20y
π
,
3ab3c
4
5
6+x
,
x
7
+
y
8
,9x+
10
y
,
a+b
2
,
1
x
+x2-
x
x2
中,分式的個數(shù)有( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把0.0068用科學(xué)記數(shù)法表示為6.8×10n,則n的值為( 。
A、-3B、-2C、3D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:
(1)(2y-1)2-2(2y-1)-3=0
(2)(x+1)2=4(x-2)2

查看答案和解析>>

同步練習(xí)冊答案