【題目】如圖,B、D、C三點在一條直線上,∠ADB=ADC=90°,BD=DE,DAC=45°;

1)線段AB、CE的關(guān)系為 ;

2)若BD=a,AD=b,AB=c,請利用此圖的面積式證明勾股定理.

【答案】1AB=CE,ABCE;(2)證明見解析.

【解析】試題分析:1)先由邊角邊證得ADB≌△CDE,可得AB=CE,BAD=ECD;延長CEAB交于點F,由同角的余角相等即可證得∠BFC=90°,ABCE;

2)把ABC面積分成,由三角形的面積公式即可證明.

試題解析:1)線段AB、CE的關(guān)系為:AB=CE,ABCE,

∵∠ADB=ADC=90°,DAC=45°

∴△ACD是等腰直角三角形,

AD=CD,

BD=ED,

ADB≌△CDESAS),

∴∠BAD=ECD,

延長CEAB于點F,如圖:

∵∠BAD+ABD=90°

∴∠ECD +ABD=90°,

ABCE;

2)如圖,設(shè)EF=x,

,

BD=a,AB=c,AD=b,

∴易得 AB=CE=cBD=DE=a,AD=CD=b,

,

即: ,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠倉庫儲存了部分原料,按原計劃每時消耗2 t,可用60 h.由于技術(shù)革新,實際生產(chǎn)能力有所提高,即每時消耗的原料量大于計劃消耗的原料量.設(shè)現(xiàn)在每時消耗原料x(單位:t),庫存的原料可使用的時間為y(單位:h).

(1)寫出y關(guān)于x的函數(shù)解析式,并求出自變量的取值范圍;

(2)若恰好經(jīng)過24 h才有新的原料進廠,為了使機器不停止運轉(zhuǎn),則x應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x1 , x2是方程x2﹣2x﹣1=0的兩根,試求下列代數(shù)式的值.
(1)(x1+x2)(x1x2);
(2)(x1﹣x22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當m為何值時,關(guān)于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0.
(1)有兩個不相等的實數(shù)根;
(2)有兩個相等的實數(shù)根;
(3)沒有實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系內(nèi),一次函數(shù)y=ax+b與二次函數(shù)y=ax2+2x+b的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1ABC中,CDABD,且BD : AD : CD2 : 3 : 4,

1)求證:AB=AC;

2)已知SABC40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止. 設(shè)點M運動的時間為t(秒),

①若DMN的邊與BC平行,求t的值;

②若點E是邊AC的中點,問在點M運動的過程中,MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某檢修小組從地出發(fā),在南北方向的路上檢修線路,如果規(guī)定向北行駛為正,向南行駛為負,一天行駛記錄如下:(單位:千米),,,,,,,,

通過列式計算:

收工時檢修工人離地多遠?在地的哪個方向上?

若檢修人員用的是耗油為每千米升的汽車作交通工具,那么這天中,這輛汽車共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】百貨商店服裝專柜在銷售中發(fā)現(xiàn):某商品的進價為每件40元.當售價為每件60元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.為占有市場份額,在確保盈利的前提下.
(1)降價多少元時,每星期盈利為6125元.
(2)降價多少元時,每星期盈利額最大,最大盈利額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算或化簡:

(1) (2)

(3)4×(-)+(-2)2×5-4÷(-); (4)

(5) (6)

查看答案和解析>>

同步練習(xí)冊答案