【題目】某市為解決農(nóng)村燃?xì)饫щy,在P處建立了一個(gè)燃?xì)庹,?/span>P站分別向A、B、C村鋪設(shè)燃?xì)夤艿。已?/span>B村在A村的北偏東60°方向,距離A村2.4km,C村在A村的正東方向,距離A村1.8km,要使此工程費(fèi)用最省,管道PA+PB+PC之和需最短,則最短長(zhǎng)度為______________km.
【答案】3
【解析】
先證明△ABC內(nèi)總存在一點(diǎn)P與三個(gè)頂點(diǎn)的連線的夾角相等,此時(shí)該點(diǎn)到三個(gè)頂點(diǎn)的距離之和最。缓蟾鶕(jù)這個(gè)原理找到點(diǎn)P,把△APC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得△ADE,證得△ABE是直角三角形,用勾股定理求出BE,即可得出PA+PB+PC之和的最短值。
解:先證明結(jié)論:△ABC內(nèi)總存在一點(diǎn)P與三個(gè)頂點(diǎn)的連線的夾角相等,此時(shí)該點(diǎn)到三個(gè)頂點(diǎn)的距離之和最。
如圖1, P為△ABC內(nèi)一點(diǎn),∠APB=∠BPC=120°,
證明:如圖2,將△ACP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△ADE,
∴∠PAD=60°,△PAC≌△DAE,
∴PA=DA、PC=DE、∠APC=∠ADE=120°,
∴△APD為等邊三角形,
∴PA=PD,∠APD=∠ADP=60°,
∴∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四點(diǎn)共線,
∴PA+PB+PC=PD+PB+DE=BE.
∴PA+PB+PC的值最小.
解決問(wèn)題:
如圖3,將三個(gè)村連接為△ABC,由上可知,當(dāng)∠APB=∠APC=∠BPC=120°時(shí),AP+BP+PC的值最小.
把△APC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得△ADE,
∴∠PAD=60°,AE=AC=2.4 km
由上可知B、P、D、E共線,且AP+BP+PC=BE,∠PAB=∠DAE,
∵B村在A村的北偏東60°方向, C村在A村的正東方向,
∴∠BAC=30°,
∴∠PAB+∠PAC=∠DAE+∠PAB=30°,
∴∠BAE=∠DAE+∠PAB+∠PAD=90°,
在Rt△ABE中,
∴PA+PB+PC=3km
故答案為:3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)前,安徽黃山腳下的小村莊的集市上,人山人海,還有人在擺“摸彩”游戲,只見(jiàn)他手拿一個(gè)黑色的袋子,內(nèi)裝大小、形狀、質(zhì)量完全相同的白球20只,且每一個(gè)球上都寫(xiě)有號(hào)碼(1~20號(hào))和1只紅球,規(guī)定:每次只摸一只球.摸前交1元錢(qián)且在1~20內(nèi)寫(xiě)一個(gè)號(hào)碼,摸到紅球獎(jiǎng)5元,摸到號(hào)碼數(shù)與你寫(xiě)的號(hào)碼相同獎(jiǎng)10元.
(1)你認(rèn)為該游戲?qū)?/span>“摸彩”者有利嗎?說(shuō)明你的理由.
(2)若一個(gè)“摸彩”者多次摸獎(jiǎng)后,他平均每次將獲利或損失多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A,點(diǎn)(﹣2,m)和(﹣5,n)在該拋物線上,則下列結(jié)論中不正確的是( 。
A. b2>4ac B. m>n C. 方程ax2+bx+c=﹣4的兩根為﹣5或﹣1 D. ax2+bx+c≥﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)A(﹣, 0),點(diǎn)B(2,0),與y軸交于點(diǎn)C(0,1),連接BC.
(1)求拋物線的解析式;
(2)N為拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作NP⊥x軸于點(diǎn)P,設(shè)點(diǎn)N的橫坐標(biāo)為t(﹣<t<2),求△ABN的面積s與t的函數(shù)解析式;
(3)若0<t<2且t≠0時(shí),△OPN∽△COB,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把n個(gè)邊長(zhǎng)為1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,計(jì)算tan∠BA4C=_____,…按此規(guī)律,寫(xiě)出tan∠BAnC=_____(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣4x+4與x軸、y軸分別交于A.B兩點(diǎn),以AB為邊在第一象限內(nèi)作正方形ABCD,頂點(diǎn)D在雙曲線y=kx-1上,將該正方形沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,頂點(diǎn)C恰好落在雙曲線y=kx-1上,則a的值是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列等式:
(a﹣b)(a+b)=a2﹣b2
(a﹣b)(a2+ab+b2)=a3﹣b3
(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…
利用你的發(fā)現(xiàn)的規(guī)律解決下列問(wèn)題
(1)(a﹣b)(a4+a3b+a2b2+ab3+b4)= (直接填空);
(2)(a﹣b)(an﹣1+an﹣2b+an﹣3b2…+abn﹣2+bn﹣1)= (直接填空);
(3)利用(2)中得出的結(jié)論求62019+62018+…+62+6+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
如圖1,在平面內(nèi)選一定點(diǎn)O,引一條有方向的射線Ox,再選定一個(gè)單位長(zhǎng)度,那么平面上任一點(diǎn)M的位置可由∠MOx的度數(shù)θ與OM的長(zhǎng)度m確定,有序數(shù)對(duì)(θ,m)稱為M點(diǎn)的“極坐標(biāo)”,這樣建立的坐標(biāo)系稱為“極坐標(biāo)系”.
應(yīng)用:在圖2的極坐標(biāo)系下,如果正六邊形的邊長(zhǎng)為2,有一邊OA在射線Ox上,則正六邊形的頂點(diǎn)C的極坐標(biāo)應(yīng)記為( 。
A.(60°,4) B.(45°,4) C.(60°,2 ) D.(50°,2 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),點(diǎn)B的坐標(biāo)為(1,0)、C(0,﹣3).
(1)求拋物線的解析式.
(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上,是否存在以A、C、E、P為頂點(diǎn)且以AC為一邊的平行四邊形?如存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com