【題目】如圖,在邊長4的正方形ABCD中,E是邊BC的中點(diǎn),將CDE沿直線DE折疊后,點(diǎn)C落在點(diǎn)F處,冉將其打開、展平,得折痕DE。連接CFBF、EF,延長BFAD于點(diǎn)G。則下列結(jié)論:①BG= DE;②CFBG;③sinDFG= ;④SDFG=.其中正確的有(

A. 1個(gè)

B. 2個(gè)

C. 3個(gè)

D. 4個(gè)

【答案】C

【解析】

①證明BGED可得平行四邊形BEDG即可;

②根據(jù)直角三角形斜邊上的中線是斜邊的一半來求解;

③證明∠DFG=∠FCB即可;

④求出sinGFD,SDFGsinGFD即可求解.

①由折疊可得CFDE,EFCE

E是邊BC的中點(diǎn)

EFCE

CFBG

BGED

∴四邊形BEDG是平行四邊形

BG DE

②由折疊可得EFCE

E是邊BC的中點(diǎn)

EFCE

CFBG

③由折疊可得DE垂直平分CF,∠EFD=90°, EFC =∠FCB

由勾股定理可得DE

,FC

BF

CFBG,∠EFD=90°

∴∠CFD+∠GFD=90°, EFC+∠CFD==90°

∴∠EFC=∠GFD=∠FCB

sinDFG sinFCB

∴③錯(cuò)誤

④由折疊可得FDCD

BFBGDE

FG

SDFGsinGFD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一塊含30°角的直角三角板OMN,其中∠MON90°,∠NMO30°,ON2,將這塊直角三角板按如圖所示位置擺放.等邊ABC的頂點(diǎn)B與點(diǎn)O重合,BC邊落在OM上,點(diǎn)A恰好落在斜邊MN上,將等邊ABC從圖1的位置沿OM方向以每秒1個(gè)單位長度的速度平移,邊AB,AC分別與斜邊MN交于點(diǎn)EF(如圖2所示),設(shè)ABC平移的時(shí)間為ts)(0t6).

1)等邊ABC的邊長為   ;

2)在運(yùn)動(dòng)過程中,當(dāng)   時(shí),MN垂直平分AB;

3)當(dāng)0t6時(shí),求直角三角板OMN與等邊ABC重疊部分的面積S與時(shí)間t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)市場有中招考試文具套裝,其中A品牌的批發(fā)價(jià)是每套20元,B品牌的批發(fā)價(jià)是每套25元,小王需購買A、B兩種品牌的文具套裝共1000套.

(1)若小王按需購買A、B兩種品牌文具套裝共用22000元,則各購買多少套?

(2)憑會(huì)員卡在此批發(fā)市場購買商品可以獲得8折優(yōu)惠,會(huì)員卡費(fèi)用為500元.若小王購買會(huì)員卡并用此卡按需購買1000套文具套裝,共用了y元,設(shè)A品牌文具套裝買了x包,請(qǐng)求出y與x之間的函數(shù)關(guān)系式.

(3)若小王購買會(huì)員卡并用此卡按需購買1000套文具套裝,共用了20000元,他計(jì)劃在網(wǎng)店包郵銷售這兩種文具套裝,每套文具套裝小王需支付郵費(fèi)8元,若A品牌每套銷售價(jià)格比B品牌少5元,請(qǐng)你幫他計(jì)算,A品牌的文具套裝每套定價(jià)不低于多少元時(shí)才不虧本(運(yùn)算結(jié)果取整數(shù))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,,

1)如圖1,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連結(jié)、,的平分線交于點(diǎn),連結(jié)

①求證:;②用等式表示線段、、之間的數(shù)量關(guān)系(直接寫出結(jié)果);

2)在圖2中,若將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連結(jié),的平分線交的延長線于點(diǎn),連結(jié).請(qǐng)補(bǔ)全圖形,并用等式表示線段、之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰△ABC中,ABBC8,∠ABC120°,BE是∠ABC的平分線,交ACE,點(diǎn)DAB的中點(diǎn),連接DE,作EFAB于點(diǎn)F

1)求證四邊形BDEF是菱形;

2)如圖以DF為一邊作矩形DFHG,且點(diǎn)E是此矩形的對(duì)稱中心,求矩形另一邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)PPECPAB于點(diǎn)D,且PE=PC,過點(diǎn)PPFOPPF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.

(1)直接寫出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):_____;

(2)四邊形BFDE的面積記為S,當(dāng)t為何值時(shí),S有最小值,并求出最小值;

(3)BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1,23,4,另外有一個(gè)可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個(gè)扇形區(qū)域,分別標(biāo)有數(shù)字12,3(如圖所示).

1)從口袋中摸出一個(gè)小球,所摸球上的數(shù)字大于2的概率為 ;

2)小龍和小東想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一人轉(zhuǎn)動(dòng)圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認(rèn)為游戲公平嗎?請(qǐng)用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長線于點(diǎn)E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,將∠D60°的菱形ABCD沿對(duì)角線AC剪開,將△ADC沿射線DC方向平移,得到△BCE,點(diǎn)M為邊BC上一點(diǎn)(點(diǎn)M不與點(diǎn)B、點(diǎn)C重合),將射線AM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,與EB的延長線交于點(diǎn)N,連接MN

(1)①求證:∠ANB=∠AMC

探究△AMN的形狀;

(2)如圖,若菱形ABCD變?yōu)檎叫?/span>ABCD,將射線AM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,原題其他條件不變,(1)中的兩個(gè)結(jié)論是否仍然成立?若成立,請(qǐng)直接寫出結(jié)論;若不成立,請(qǐng)寫出變化后的結(jié)論并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案