【題目】已知,,,是的中點,是平面上的一點,且,連接.
(1)如圖,當點在線段上時,求的長;
(2)當是等腰三角形時,求的長;
(3)將點繞點順時針旋轉(zhuǎn)得到點,連接,求的最大值.
【答案】(1)2;(2)見解析;(3) .
【解析】
(1)根據(jù)勾股定理求出AB的長,由直角三角形斜邊中線的性質(zhì)可求出CD的長,利用勾股定理求出PC的長即可;(2)由DP=1可知點P在以D為圓心,1為半徑的圓上,分別討論、、的情況,求出PC的長即可;(3)由旋轉(zhuǎn)性質(zhì)可知,,可得,由等腰直角三角形的性質(zhì)可知,進而可證明∽,即可得,利用三角形三邊關(guān)系即可得答案.
(1)如圖1中,連接.
在中,,,
∴,
∵,
∴,,
在中,.
(2)如圖2中,∵,
∴點在以點為圓心的⊙上.
①當時,
∵,
∴都在線段的垂直平分線上,設直線交于.
∴,,
∵,
∴,
在中,,
當在線段上時,,,
當在線段的延長線上時,,.
②當時,∵,
∴,此種情形不存在;
③當時,同理這種情形不存在;
如圖3中
(3)如圖4中,連接.
由旋轉(zhuǎn)可知:,,
∴,
∴,
∴,
∵,,
∴,
∴,
∴,
∵,
∴,
∴,
∴∽,
∴,
∵,
∴點落在的延長線與⊙的交點處,的值最大,
∴.
∴的最大值為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線:記為,它與軸交于兩點,;將繞旋轉(zhuǎn)得到,交軸于;將繞旋轉(zhuǎn)得到,交軸于;…如此進行下去,直至得到,若點在第6段拋物線上,則______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點O是對角線AC的中點,點M為BC上一點,連接AM,且AB=AM,點E為BM中點,AF⊥AB,連接EF,延長FO交AB于點N.
(1)若BM=4,MC=3,AC=,求AM的長度;
(2)若∠ACB=45°,求證:AN+AF=EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)如今,“垃圾分類”意識已深入人心,垃圾一般可分為:可回收物、廚余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了兩袋垃圾.
(1)直接寫出甲所拿的垃圾恰好是“廚余垃圾”的概率;
(2)求乙所拿的兩袋垃圾不同類的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某醫(yī)藥廠兩年前生產(chǎn)1t某種藥品的成本是5000元,隨著生產(chǎn)技術(shù)的進步,現(xiàn)在生產(chǎn)1t該種藥品的成本是3000元.設該種藥品生產(chǎn)成本的年平均下降率為x,則下列所列方程正確的是( 。
A. 5000×2(1﹣x)=3000 B. 5000×(1﹣x)2=3000
C. 5000×(1﹣2x)=3000 D. 5000×(1﹣x2)=3000
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
工廠加工某種新型材料,首先要將材料進行加溫處理,使這種材料保持在一定的溫度范圍內(nèi)方可進行繼續(xù)加工處理這種材料時,材料溫度是時間的函數(shù)下面是小明同學研究該函數(shù)的過程,把它補充完整:
在這個函數(shù)關(guān)系中,自變量x的取值范圍是______.
如表記錄了17min內(nèi)10個時間點材料溫度y隨時間x變化的情況:
時間 | 0 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | |
溫度 | 15 | 24 | 42 | 60 | m |
上表中m的值為______.
如圖,在平面直角坐標系xOy中,已經(jīng)描出了上表中的部分點根據(jù)描出的點,畫出該函數(shù)的圖象.
根據(jù)列出的表格和所畫的函數(shù)圖象,可以得到,當時,y與x之間的函數(shù)表達式為______,當時,y與x之間的函數(shù)表達式為______.
根據(jù)工藝的要求,當材料的溫度不低于時,方可以進行產(chǎn)品加工,在圖中所示的溫度變化過程中,可以進行加工的時間長度為______min.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點 D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點P是AE上一個動點,則PF+PB的最小值為___________ 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某排球隊6名場上隊員的身高單位:是:180,184,188,190,192,現(xiàn)用一名身高為186cm的隊員換下場上身高為192cm的隊員.
(1)求換人前身高的平均數(shù)及換人后身高的平均數(shù);
(2)求換人后身高的方差.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在一次數(shù)學興趣小組活動中,進行了如下探索活動.
問題原型:如圖(1),在矩形ABCD中,AB=6,AD=8,P、Q分別是AB、AD邊的中點,以AP、AQ為鄰邊作矩形APEQ,連接CE,則CE的長為 (直接填空)
問題變式:(1)如圖(2),小明讓矩形APEQ繞著點A逆時針旋轉(zhuǎn)至點E恰好落在AD上,連接CE、DQ,請幫助小明求出CE和DQ的長,并求DQ:CE的值.
(2)如圖(3),當矩形APEQ繞著點A逆時針旋轉(zhuǎn)至如圖(3)位置時,請幫助小明判斷DQ:CE的值是否發(fā)生變化?若不變,說明理由.若改變,求出新的比值.
問題拓展:若將“問題原型”中的矩形ABCD改變?yōu)槠叫兴倪呅?/span>ABCD,且AB=3,AD=7,∠B=45°,P、Q分別是AB、AD邊上的點,且AP=AB,AQ=AD,以AP、AQ為鄰邊作平行四邊形APEQ.當平行四邊形APEQ繞著點A逆時針旋轉(zhuǎn)至如圖(4)位置時,連接CE、DQ.請幫助小明求出DQ:CE的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com