【題目】泉州市旅游資源豐富,①清源山、②開元寺、③崇武古城三個景區(qū)是人們節(jié)假日玩的熱點景區(qū),張老師對八(1)班學生五·一小長假隨父母到這三個景區(qū)游玩的計劃做了全面調(diào)查,調(diào)查分四個類別:A、游三個景區(qū);B,游兩個景區(qū);C,游一個景區(qū):D,不到這三個景區(qū)游玩現(xiàn)根據(jù)調(diào)查結(jié)果繪制了不完整的條形統(tǒng)計圖和廟形統(tǒng)計圖,請結(jié)合圖中信息解答下列問題:

1)八(1)班共有學生   人在扇形統(tǒng)計圖中,表示B類別的扇形的圓心角的度數(shù)為   

2)請將條形統(tǒng)計圖補充完整;

3)若小華、小剛兩名同學,各自從三個最區(qū)中隨機選一個作為51日游玩的景區(qū),請用樹狀圖或列表法求他們選中同個景區(qū)的概率.

【答案】(1) 50,72°;(2)詳見解析;(3)

【解析】

1)根據(jù)A類別5人,占10%,可求得總?cè)藬?shù),繼而求得B類別占的百分數(shù),則可求得“B類別”的扇形的圓心角的度數(shù);

2)先求出D類別的人數(shù),即可將條形統(tǒng)計圖補充完整;

3)根據(jù)題意畫出樹狀圖,再利用概率公式求解即可求得答案.

1)∵A5人,占10%,∴八(1)班共有學生有:5÷10%=50(人);∴在扇形統(tǒng)計圖中,表示“B類別”的扇形的圓心角的度數(shù)為:360°=72°.

故答案為:50,72°;

2D類的人數(shù)有:5051015=20(人),如圖:

3)分別用12,3表示清源山、開元寺、崇武古城,畫樹狀圖得:

∵共有9種等可能的結(jié)果,他們選中同個景區(qū)的有3種情況,∴他們選中同個景區(qū)的概率為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點E,F(xiàn)DC的中點,連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB;④∠CFE=3DEF,其中正確結(jié)論的個數(shù)共有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)y=ax2+bx+ca≠0)中,函數(shù)值y與自變量x的部分對應值如表:

x

-2

-1

0

1

2

y

0

-2

-2

0

4

1)求該二次函數(shù)的表達式;

2)當y≥4時,求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示是二次函數(shù)圖象的一部分,圖象過點,二次函數(shù)圖象對稱軸為直線,給出五個結(jié)論:①;③當時,的增大而增大;④方程的根為,其中正確結(jié)論是(

A. ①②③ B. ①③④ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AD,對角線BD為⊙O的直徑,AC與BD交于點E.點F為CD延長線上,且DF=BC.

(1)證明:AC=AF;

(2)若AD=2,AF=,求AE的長;

(3)若EG∥CF交AF于點G,連接DG.證明:DG為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABBC,點EAB上,DEC90°

1)求證:ADE∽△BEC

2)若AD1BC3,AE2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=(x-2)2x軸交于點A,與y軸交于點B,過點BBCx軸,交拋物線于點C,過點AADy軸,交BC于點D,點PBC下方的拋物線上(不與點BC重合),連接PCPD,設(shè)PCD的面積為S,則S的最大值是________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩塊斜邊長相等的等腰直角三角板按如圖①擺放,斜邊AB分別交CD,CE于M,N點.

(1)如果把圖①中的△BCN繞點C逆時針旋轉(zhuǎn)90°得到△ACF,連接FM,如圖②,求證:△CMF≌△CMN;

(2)將△CED繞點C旋轉(zhuǎn)則:

當點M,N在AB上(不與點A,B重合)時,線段AM,MN,NB之間有一個不變的關(guān)系式請你寫出這個關(guān)系式,并說明理由;

當點M在AB上,點N在AB的延長線上(如圖③)時,①中的關(guān)系式是否仍然成立?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的公路上有A、B兩地,甲、乙兩輛貨車都要從A地送貨到B地,甲車先從A地出發(fā)勻速行駛,3小時后,乙車從A地出發(fā),并沿同一路線勻速行駛,當乙車到達B地后立刻按原速返回,在返回途中第二次與甲車相遇。甲車出發(fā)的時間記為t (小時),兩車之間的距離記為y(千米),yt的函數(shù)關(guān)系如圖所示,則乙車第二次與甲車相遇時,甲車距離A___千米.

查看答案和解析>>

同步練習冊答案