【題目】如圖,已知函數(shù)y=x+2的圖象與y軸交于點A,一次函數(shù)y=kx+b的圖象經(jīng)過點B(0,4)且與x軸及y=x+2的圖象分別交于點C、D,點D的坐標為(,n)
(1)則n= ,k= ,b=_______.
(2)若函數(shù)y=kx+b的函數(shù)值大于函數(shù)y=x+2的函數(shù)值,則x的取值范圍是_______.
(3)求四邊形AOCD的面積.
【答案】(1),2,4;(2)x<;(3).
【解析】
(1)根據(jù)點D在函數(shù)y=x+2的圖象上,即可求出n的值;再利用待定系數(shù)法求出k,b的值;
(2)根據(jù)圖象,直接判斷即可;
(3)用三角形OBC的面積減去三角形ABD的面積即可.
(1)∵點D( ,n)在直線y=x+2上,
∴n=+2=,
∵一次函數(shù)經(jīng)過點B(0,4)、點D(, ),
∴ ,解得: ,
故答案為:,2,4;
(2)由圖象可知,函數(shù)y=kx+b大于函數(shù)y=x+2時,圖象在直線x=的左側(cè),
∴x<,
故答案為:x<,
(3)直線y=2x+4與x軸交于點C,
∴令y=0,得:2x+4=0,解得x=2,
∴點C的坐標為(2,0),
∵函數(shù)y=x+2的圖象與y軸交于點A,
∴令x=0,得:y=2,
∴點A的坐標為(0,2),
S = ×2×4=4,
S =×(42)× =,
∴S =S
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線與軸、軸分別交于點、,與雙曲線交于第一象限的點和第三象限的點,點的縱坐標為
求和的值;
求不等式:的解集
過軸上的點作平行于軸的直線,分別與直線和雙曲線交于點、,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,湛河兩岸AB與EF平行,小亮同學(xué)假期在湛河邊A點處,測得對岸河邊C處視線與湛河岸的夾角∠CAB=37°,沿河岸前行140米到點B處,測得對岸C處的視線與湛河岸夾角∠CBA=45°.問湛河的寬度約多少米?(參考數(shù)據(jù):sin37°≈0.60,cos37°=0.80,tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P(3m-6,m+1),試分別根據(jù)下列條件,求出點P的坐標.
(1)點P的橫坐標比縱坐標大1;
(2)點P在過點A(3,-2),且與x軸平行的直線上;
(3)點P到y軸的距離是到x軸距離的2倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·西寧)西寧中心廣場有各種音樂噴泉,其中一個噴水管的最大高度為3米,此時距噴水管的水平距離為米,在如圖3所示的坐標系中,這個噴泉的函數(shù)關(guān)系式是
A. y=-(x-)x2+3 B. y=-3(x+)x2+3
C. y=-12(x-)x2+3 D. y=-12(x+)x2+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,AC=8,△ABC的面積為20,∠BAC的平分線交BC于點D,M,N分別是AD和AB上的動點,則BM+MN的最小值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,點E在△ABC外一點,CE⊥AE于點E,CE=BC.
(1)作出△ABC的角平分線AD.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡.)
(2)求證:∠ACE=∠B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某港口有一燈塔,燈塔的正東有、兩燈塔,以為直徑的半圓區(qū)域內(nèi)有若干暗礁,海里,一船在處測得燈塔、分別在船的
南偏西和南偏西方向,船沿方向行駛海里恰好處在燈塔的正北方向處.
求的長(精確到海里);
若船繼續(xù)沿方向朝行駛,是否有觸礁的危險?
(參考數(shù)值:,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(新知學(xué)習(xí))
如果一個三角形有一邊上的中線等于這條邊的一半,那么我們就把這樣的三角形叫做“智慧三角形”.
(簡單運用)
(1)下列三個三角形,是智慧三角形的是______(填序號);
(2)如圖,已知等邊三角形,請用刻度尺在該三角形邊上找出所有滿足條件的點,使為“智慧三角形”,并寫出作法;
(深入探究)
(3)如圖,在正方形中,點是的中點,是上一點,且,試判斷是否為“智慧三角形”,并說明理由;
(靈活應(yīng)用)
(4)如圖,等邊三角形邊長.若動點以的速度從點出發(fā),沿的邊運動.若另一動點以的速度從點出發(fā),沿邊運動,兩點同時出發(fā),當點首次回到點時,兩點同時停止運動.設(shè)運動時間為,那么為______時,為“智慧三角形”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com