【題目】經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉或向右轉,如果這三種可能性大小相同,現(xiàn)有兩輛汽車經(jīng)過這個十字路口.
(1)試用樹狀圖或列表法中的一種列舉出這輛汽車行駛方向所有可能的結果;
(2)求至少有一輛汽車向左轉的概率.

【答案】
(1)解法1:畫“樹形圖”列舉這兩輛汽車行駛方向所有可能的結果如圖所示:

∴這兩輛汽車行駛方向共有9種可能的結果;


(2)解法1:由(1)中“樹形圖”知,至少有一輛汽車向左轉的結果有5種,且所有結果的可能性相等

∴P(至少有一輛汽車向左轉)=

解法2:根據(jù)題意,可以列出如下的表格:

(左,左)

(左,直)

(左,右)

(直,左)

(直,直)

(直,右)

(右,左)

(右,直)

(右,右)

∴P(至少有一輛汽車向左轉)=


【解析】此題可以采用列表法或樹狀圖求解.可以得到一共有9種情況,至少有一輛車向左轉有5種情況,根據(jù)概率公式求解即可.
【考點精析】關于本題考查的列表法與樹狀圖法,需要了解當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.

(1)AEFC會平行嗎?說明理由

(2)ADBC的位置關系如何?為什么?

(3)BC平分∠DBE?為什么

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.

1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).

2)為了提前完成生產(chǎn)任務,工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務,求原計劃安排的工人人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D在△ABC的內(nèi)部且DB=DC,點E,F(xiàn)在△ABC的外部,F(xiàn)B=FA,EA=EC,∠FBA=∠DBC=∠ECA.

(1)①填空:△ACE∽;
(2)求證:△CDE∽△CBA;
(3)求證:△FBD≌△EDC;
(4)若點D在∠BAC的平分線上,判斷四邊形AFDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究題:

1三條直線相交,最少有__________個交點,最多有__________個交點,分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補角的對數(shù);

2四條直線相交,最少有__________個交點,最多有__________個交點,分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補角的對數(shù);

3依次類推n條直線相交,最少有__________個交點最多有__________個交點,對頂角有__________,鄰補角有__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結論共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和爸爸從家步行去公園,爸爸先出發(fā)一直勻速前進,小明后出發(fā),家到公園的距離為2500m,如圖是小明和爸爸所走路程s(m)與步行時間t(min)的函數(shù)圖象.
(1)直接寫出小明所走路程s與時間t的函數(shù)關系式;
(2)小明出發(fā)多少時間與爸爸第三次相遇?
(3)在速度都不變的情況下,小明希望比爸爸早20min到達公園,則小明在步行過程中停留的時間需作怎樣的調(diào)整?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點順時針方向旋轉得到△ADE,連接BD,CE交于點F,求證:△AEC≌△ADB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的邊AD與經(jīng)過A、B、C三點的⊙O相切

(1)求證:弧AB=弧AC
(2)如圖2,延長DC交⊙O于點E,連接BE,sin∠E= ,求tan∠D

查看答案和解析>>

同步練習冊答案