【題目】為了了解本校學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,課題小組隨機選取該校部分學生進行了問卷調(diào)査(問卷調(diào)査表如圖所示),并根據(jù)調(diào)查結果繪制了圖1、圖2兩幅統(tǒng)計圖(均不完整),請根據(jù)統(tǒng)計圖解答下列問題.
(1)本次接受問卷調(diào)查的學生有____名.
(2)補全條形統(tǒng)計圖.
(3)扇形統(tǒng)計圖中B類節(jié)目對應扇形的圓心角的度數(shù)為_____.
(4)該校共有4000名學生,根據(jù)調(diào)查結果估計該校最喜愛新聞節(jié)目的學生人數(shù).
【答案】(1)100;(2)圖見詳解;(3)72°;(4)320.
【解析】
(1)根據(jù)D的人數(shù)和所占百分比可以求得本次調(diào)查人數(shù);
(2)根據(jù)(1)中的總人數(shù)和圖一中的數(shù)據(jù),可以求出C的人數(shù),進而可以將條形統(tǒng)計圖補充完整;
(3)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù)可以求得扇形統(tǒng)計圖中B類節(jié)目所對應扇形的圓心角度數(shù);
(4)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得該校最喜愛新聞節(jié)目的學生的人數(shù).
(1)根據(jù)統(tǒng)計圖可得,本次參加問卷調(diào)查的學生有:
36÷36%=100(名)
故答案為:100.
(2)喜愛C的有:100-8-20-36-6=30(人),
補全條形統(tǒng)計圖如下圖所示:
(3)扇形統(tǒng)計圖中B類節(jié)目對應扇形的圓心角的度數(shù)為:
360°×=72°,
故答案為:72°;
(4) =320(人),
答:該校最喜愛新聞節(jié)目的學生有320人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,對角線AC與BD相交于點O,過點O作直線EF⊥BD,且交AC于點E,交BC于點F,連接BE、DF,且BE平分∠ABD.
(1)①求證:四邊形BFDE是菱形;②求∠EBF的度數(shù).
(2)把(1)中菱形BFDE進行分離研究,如圖2,G,I分別在BF,BE邊上,且BG=BI,連接GD,H為GD的中點,連接FH,并延長FH交ED于點J,連接IJ,IH,IF,IG.試探究線段IH與FH之間滿足的數(shù)量關系,并說明理由;
(3)把(1)中矩形ABCD進行特殊化探究,如圖3,矩形ABCD滿足AB=AD時,點E是對角線AC上一點,連接DE,作EF⊥DE,垂足為點E,交AB于點F,連接DF,交AC于點G.請直接寫出線段AG,GE,EC三者之間滿足的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一跨河橋,橋拱是圓弧形,跨度(AB)為16米,拱高(CD)為4米,求:
(1)橋拱半徑.
(2)若大雨過后,橋下河面寬度(EF)為12米,求水面漲高了多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點A順時針旋轉一定的角度得到△AED,點B、C的對應點分別是E、D.
(1)如圖1,當點E恰好在AC上時,求∠CDE的度數(shù);
(2)如圖2,若=60°時,點F是邊AC中點,求證:四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點E、F分別是四邊形ABCD邊AB、AD上的點,且DE與CF相交于點G。
(1)如圖①,若AB∥CD,AB=CD,∠A=90°,且AD·DF=AE·DC,求證:DE⊥CF;
(2)如圖②,若AB∥CD,AB=CD,且∠A=∠EGC時,求證:DE·CD=CF·DA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是邊長為的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當點P在BD上運動時(不包括B、D兩點),以下結論中:①MF=MC;②AH⊥EF;③AP2=PMPH;④EF的最小值是.其中正確結論是( )
A. ①③ B. ②③ C. ②③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC,連接OB,點D為OB的中點,點E是線段AB上的動點,連接DE,作DF⊥DE,交OA于點F,連接EF.已知點E從A點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設移動時間為t秒.
(1)如圖1,當t=3時,求DF的長.
(2)如圖2,當點E在線段AB上移動的過程中,的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出的值.
(3)連接AD,當AD將△DEF分成的兩部分的面積之比為1:2時,求相應的t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△的頂點、在坐標軸上,點的坐標是(2,2).將△ABC沿軸向左平移得到△A1B1C1,點落在函數(shù)y=-.如果此時四邊形的面積等于,那么點的坐標是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中點,P是直線BC上一點,把△BDP沿PD所在直線翻折后,點B落在點Q處,如果QD⊥BC,那么點P和點B間的距離等于____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com