【題目】如圖,一枚運(yùn)載火箭從距雷達(dá)站C處5km的地面O處發(fā)射,當(dāng)火箭到達(dá)點(diǎn)A,B時,在雷達(dá)站C處測得點(diǎn)A,B的仰角分別為34°,45°,其中點(diǎn)O,A,B在同一條直線上.求A,B兩點(diǎn)間的距離(結(jié)果精確到0.1km).
(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.67.)

【答案】解:由題意可得:∠AOC=90°,OC=5km.

在Rt△AOC中,

∵tan34°= ,

∴OA=OCtan34°=5×0.67=3.35km,

在Rt△BOC中,∠BCO=45°,

∴OB=OC=5km,

∴AB=5﹣3.35=1.65≈1.7km,

答:A,B兩點(diǎn)間的距離約為1.7km.


【解析】求AB的關(guān)鍵是求OA,OA放在Rt△AOC中,由tan34°可由直角邊求直角邊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC的兩條中線AD、BE交于點(diǎn)F,連接CF,若△ABC的面積為24,則△ABF的面積為( )

A. 10 B. 8 C. 6 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)平面內(nèi)將一副三角板按如圖1所示擺放,EBC= °;

(2)平面內(nèi)將一副三角板按如圖2所示擺放,若EBC=165°,那么α= °;

(3)平面內(nèi)將一副三角板按如圖3所示擺放,EBC=115°,求α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1,∠2互為補(bǔ)角,且∠3=B,

(1)求證:∠AFE=ACB

(2)CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國明代著名數(shù)學(xué)家程大位的《算法統(tǒng)宗》一書中記載了一些詩歌形式的算題其中有一個“百羊問題”甲趕群羊逐草茂,乙拽肥羊一只隨其后;戲問甲及一百否?甲云所說無差謬若得這般一群湊,再添半群小半群,得你一只來方湊.玄機(jī)奧妙誰猜透.題目的意思是甲趕了一群羊在草地上往前走,乙牽了一只肥羊緊跟在甲的后面.乙問甲“你這群羊有一百只嗎?”甲說“如果再有這么一群,再加半群又加四分之一群,再把你的一只湊進(jìn)來,才滿100只.”請問甲原來趕的羊一共有多少只?如果設(shè)甲原來趕的羊一共有,那么可列方程______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016浙江省麗水市)如圖,在菱形ABCD中,過點(diǎn)BBEAD,BFCD,垂足分別為點(diǎn)E,F,延長BDG,使得DG=BD,連結(jié)EG,FG,若AE=DE,則=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程

如圖,已知DEBCDF、BE分別平分∠ADEABC,可推得∠FDE=DEB的理由:

DEBC(已知)

∴∠ADE=      .(       

DFBE分別平分∠ADE、ABC,

∴∠ADF=      ,

ABE=      .(       

∴∠ADF=ABE

DF    .(       

∴∠FDE=DEB. (      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為進(jìn)一步普及我市中小學(xué)生的法律知識,提升學(xué)生法律意識,在2018124日第五個國家憲法日來臨之際,我市某區(qū)在中小學(xué)舉行了學(xué)習(xí)憲法知識競賽活動,各類獲獎學(xué)生人數(shù)的比例情況如圖所示,其中獲得優(yōu)勝獎的學(xué)生共400名,請結(jié)合圖中信息,解答下列問題:

(1)求獲得一等獎的學(xué)生人數(shù);

(2)在本次知識競賽活動中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場法律知識搶答賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°AC=BC,直線l過點(diǎn)C,BDl,AEl,垂足分別為D、E

1)當(dāng)直線l不與底邊AB相交時,求證:ED=AE+BD;

2)如圖2,將直線l繞點(diǎn)C順時針旋轉(zhuǎn),使l與底邊AB相交時,請你探究ED、AE、BD三者之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案