【題目】已知,在△ABC中,∠BAC=90°,∠ABC=45°,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合).以AD為邊做正方形ADEF,連接CF
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí).求證CF+CD=BC;
(2)如圖2,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)直接寫(xiě)出CF,BC,CD三條線段之間的關(guān)系;
(3)如圖3,當(dāng)點(diǎn)D在線段BC的反向延長(zhǎng)線上時(shí),且點(diǎn)A,F分別在直線BC的兩側(cè),其他條件不變;
①請(qǐng)直接寫(xiě)出CF,BC,CD三條線段之間的關(guān)系;
②若正方形ADEF的邊長(zhǎng)為,對(duì)角線AE,DF相交于點(diǎn)O,連接OC.求OC的長(zhǎng)度.
【答案】(1)證明見(jiàn)解析;(2)CF﹣CD=BC;(3)①CD﹣CF=BC;②2.
【解析】
(1)三角形ABC是等腰直角三角形,利用SAS即可證明△BAD≌△CAF,從而證得CF=BD,據(jù)此即可證得.
(2)同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CF﹣CD=BC.
(3)①同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CD﹣CB=CF.
②證明△BAD≌△CAF,△FCD是直角三角形,然后根據(jù)正方形的性質(zhì)即可求得DF的長(zhǎng),則OC即可求得.
解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.
∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°.
∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF.
∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,
∴△BAD≌△CAF(SAS).∴BD=CF.
∵BD+CD=BC,∴CF+CD=BC.
(2)CF-CD=BC;
理由:∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS)
∴BD=CF
∴BC+CD=CF,
∴CF-CD=BC;
(3)①∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS),
∴BD=CF,
∴CD-BC=CF,
②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.
∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°.
∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF.
∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,
∴△BAD≌△CAF(SAS).∴∠ACF=∠ABD.
∵∠ABC=45°,∴∠ABD=135°.∴∠ACF=∠ABD=135°.∴∠FCD=90°.
∴△FCD是直角三角形.
∵正方形ADEF的邊長(zhǎng)為且對(duì)角線AE、DF相交于點(diǎn)O,
∴DF=AD=4,O為DF中點(diǎn).
∴OC=DF=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 某校為加強(qiáng)學(xué)生安全意識(shí),組織了全校1500名學(xué)生參加安全知識(shí)競(jìng)賽,從中抽取了部分學(xué)生成績(jī)(得分取正整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)尚為完成的頻率和頻數(shù)分布直方圖,解答下列問(wèn)題:
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
50.5~60.5 | 16 | 0.08 |
60.5~70.5 | 40 | 0.2 |
70.5~80.5 | 50 | 0.25 |
80.5~90.5 | m | 0.35 |
90.5~100.5 | 24 | n |
(1)這次抽取了______名學(xué)生的競(jìng)賽成績(jī)進(jìn)行統(tǒng)計(jì),其中m=______,n=______;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?/span>70分以下(含70分)的學(xué)生為安全意識(shí)不強(qiáng),有待進(jìn)一步加強(qiáng)安全教育,則該校安全意識(shí)不強(qiáng)的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把兩個(gè)全等的等腰直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合.現(xiàn)將三角板EFG繞O點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角α滿足條件:0°<α<90°),四邊形CHGK是旋轉(zhuǎn)過(guò)程中兩三角板的重疊部分,已知AC=4.在旋轉(zhuǎn)過(guò)程中,下列結(jié)論:①BH=CK;②四邊形CHGK的面積等于4;③GK長(zhǎng)度的最大值為2;④線段KH的長(zhǎng)度最小值為2.其中正確的有( 。﹤(gè)
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長(zhǎng)為4,頂點(diǎn)A,C分別在x軸、y軸的正半軸上,拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)B,C兩點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),連接AC,BD,CD.
(1)求此拋物線的解析式;
(2)求此拋物線頂點(diǎn)D的坐標(biāo)和四邊形ABDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是四邊形ABCD的對(duì)角線,AD=BC,AD∥BC,∠ABD=∠DBC,DE⊥AB于E.
(1)求證:CD=CB;
(2)若AB=5,BD=6,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,BC=6,AB=10.點(diǎn)Q與點(diǎn)B在AC的同側(cè),且AQ⊥AC.
(1)如圖1,點(diǎn)Q不與點(diǎn)A重合,連結(jié)CQ交AB于點(diǎn)P.設(shè)AQ=x,AP=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍;
(2)是否存在點(diǎn)Q,使△PAQ與△ABC相似,若存在,求AQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,過(guò)點(diǎn)B作BD⊥AQ,垂足為D.將以點(diǎn)Q為圓心,QD為半徑的圓記為⊙Q.若點(diǎn)C到⊙Q上點(diǎn)的距離的最小值為8,求⊙Q的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是內(nèi)任意一點(diǎn),且,點(diǎn)和點(diǎn)分別是射線和射線上的動(dòng)點(diǎn),當(dāng)周長(zhǎng)取最小值時(shí),則的度數(shù)為( )
A.145°B.110°C.100°D.70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=50°,CE為△ABC的角平分線,AC邊上的高BD與CE所在的直線交于點(diǎn)F,若∠ABD:∠ACF=3:5,則∠BEC的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD中,∠ADC=120°,ADAB,E、F分別是AB、CD的中點(diǎn),過(guò)點(diǎn)A作AG∥BD,交CB的延長(zhǎng)線于點(diǎn)G.
(1)求證:DE=BE;
(2)請(qǐng)判斷四邊形AGBD是什么特殊的四邊形,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com