【題目】在△ABC中,AB=AC,BD=CD,∠BAD=40°,AD=AE.求∠CDE的度數(shù).
【答案】解:∵AB=AC,
∴△ABC為等腰三角形,
∵AD=AE,
∴△ADE為等腰三角形,
∵∠BAD=40°,
∴∠DAE=40°,
∴∠ADE= (180°﹣∠DAE)= (180°﹣40°)=70°,
又∵△ABC為等腰三角形,BD=CD,
∴AD⊥CD(三線合一),
∴∠CDE=90°﹣∠ADE=90°﹣70°=20°.
故答案為:20°
【解析】首先得到△ABC,△ADE均為等腰三角形,再根據(jù)等腰三角形的性質求解.
【考點精析】通過靈活運用三角形的內角和外角,掌握三角形的三個內角中,只可能有一個內角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD是平行四邊形,下列結論中不正確的是( 。
A.當AC=BD時,它是矩形B.當AC⊥BD時,它是菱形
C.當∠A=60°時,它是菱形D.當AB=BC,AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了傳承優(yōu)秀傳統(tǒng)文化,某校開展“經典誦讀”比賽活動,誦讀材料有《論語》,《三字經》,《弟子規(guī)》(分別用字母A,B,C依次表示這三個誦讀材料),將A,B,C這三個字母分別寫在3張完全相同的不透明卡片的正面上,把這3張卡片背面朝上洗勻后放在桌面上.小明和小亮參加誦讀比賽,比賽時小明先從中隨機抽取一張卡片,記錄下卡片上的內容,放回后洗勻,再由小亮從中隨機抽取一張卡片,選手按各自抽取的卡片上的內容進行誦讀比賽.
(1)小明誦讀《論語》的概率是 .
(2)請用列表法或畫樹狀圖法求小明和小亮誦讀兩個不同材料的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則下列四個結論:①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP,其中結論正確的序號為( )
A.①②③
B.①②④
C.②③④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個多邊形的各邊都相等,且各內角也都相等,那么這個多邊形就叫做正多邊形.如圖,就是一組正多邊形,觀察每個正多邊形中∠α的變化情況:
(1)將下面的表格補充完整:
(2)根據(jù)規(guī)律,是否存在一個正多邊形,其中的∠α=21°?若存在,請求出n的值,若不存在,請說明理由.
正多邊形邊數(shù) | 3 | 4 | 5 | 6 | … | n |
∠α的度數(shù) | 60° | … |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情景:
如圖,在直角坐標系xOy中,點A、B為二次函數(shù)y=ax2(a>0)圖象上的兩點,且點A、B的橫坐標分別為m、n(m>n>0),連接OA、AB、OB.設△AOB的面積為S時,解答下列問題:
探究:當a=1時,
mn | mn | S | |
m=3,n=1 | 3 | 2 | |
m=5,n=2 | 10 | 3 |
當a=2時,
2mn | mn | S | |
m=3,n=1 | 6 | 2 | |
m=5,n=2 | 20 | 3 |
歸納證明:
對任意m、n(m>n>0),猜想S=_________________ (用a,m,n表示),并證明你的猜想.
拓展應用:
若點A、B的橫坐標分別為m、n(m>0>n),其它條件不變時,△AOB的面積S=____ (用a, m,n表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,以AB的中點O為圓心,OA為半徑的圓交AC于點D,E是BC的中點,連接DE,OE.
(1)判斷DE與⊙O的位置關系,并說明理由;
(2)求證:BC2=2CDOE;
(3)若,求OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com