【題目】一個(gè)多邊形的內(nèi)角和等于1260°,則這個(gè)多邊形是_____邊形.

【答案】9

【解析】

這個(gè)多邊形的內(nèi)角和是1260°,n邊形的內(nèi)角和是(n-2)·180°,即可列出方程求解

解:根據(jù)題意,得

n2180°1260°

解得n9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(﹣3)×|﹣2|的結(jié)果等于( 。

A. 6 B. 5 C. ﹣6 D. ﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:18.6°+42°24′=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等腰三角形的兩邊長(zhǎng)為3和7,則該等腰三角形的周長(zhǎng)為( 。

A. 10 B. 13 C. 17 D. 13或17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)舉辦了一次以我的中國(guó)夢(mèng)為主題的演講比賽,最后確定7名同學(xué)參加決賽,他們的決賽成績(jī)各不相同,其中李華已經(jīng)知道自己的成績(jī),但能否進(jìn)前四名,他還必須清楚這七名同學(xué)成績(jī)的( )

A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索發(fā)現(xiàn):如圖1,已知直線l1l2,且l3l1l2分別相交于AB兩點(diǎn),l4l1、l2分別交于C、D兩點(diǎn),∠ACP記作∠1,∠BDP記作∠2,∠CPD記作∠3.點(diǎn)P在線段AB上.

(1)若∠1=20°,∠2=30°,請(qǐng)你求出∠3的度數(shù)

歸納總結(jié):(2)請(qǐng)你根據(jù)上述問題,請(qǐng)你找出圖1中∠1、∠2、∠3之間的數(shù)量關(guān)系,并直接寫出你的結(jié)論.

實(shí)踐應(yīng)用:(3)應(yīng)用(2)中的結(jié)論解答下列問題:如圖2,點(diǎn)AB的北偏東40°的方向上,在C的北偏西45°的方向上,請(qǐng)你根據(jù)上述結(jié)論直接寫出∠BAC的度數(shù).

拓展延伸:(4)如果點(diǎn)P在直線l3上且在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),其他條件不變,試探究∠1、∠2、

∠3之間的關(guān)系(點(diǎn)PA、B兩點(diǎn)不重合),寫出你的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程:

如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:

∵∠1=∠2(已知),

∠1=∠CGD ),

∴∠2=∠CGD(等量代換).

∴CE∥BF ).

∴∠ =∠C ).

∵∠B=∠C(已知),

∴∠ =∠B(等量代換).

∴AB∥CD ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠MON=40°,OE平分∠MON,點(diǎn)A、BC分別是射線OM、OEON上的動(dòng)點(diǎn)(A、BC不與點(diǎn)O重合),連接AC交射線OE于點(diǎn)D.設(shè)∠OAC= °.

(1)如圖1,若AB//ON,則①∠ABO的度數(shù)是______;②當(dāng)∠BAD=∠ABD時(shí), =______;③當(dāng)∠BAD=∠BDA時(shí), =______.

(2)如圖2,若ABOM,則是否存在這樣的x的值,使得△ADB中有兩個(gè)相等的角?若存在,求出x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙內(nèi)將△ABC水平向右平移4個(gè)單位得到△A′B′C′.

(1)畫出△A′B′C′;

(2)利用網(wǎng)格點(diǎn)和直尺畫圖:畫出AB邊上的高線CD;

(3)圖中△ABC的面積是 ;

(4)△ABC與△EBC面積相等,點(diǎn)E是異于A點(diǎn)的格點(diǎn),則這樣的E點(diǎn)有 個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案