【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MNAD相交于點(diǎn)N,連接BM,DN.

1)求證:四邊形BMDN是菱形;

2)若AB=4,AD=8,求MD的長(zhǎng).

【答案】1)見解析;(2MD長(zhǎng)為5

【解析】

1)根據(jù)矩形性質(zhì)求出ADBC,推出∠MDO=NBO,∠DMO=BNO,證△DMO≌△BNO,推出OM=ON,得出平行四邊形BMDN,推出菱形BMDN;
2)根據(jù)菱形性質(zhì)求出DM=BM,在RtAMB中,根據(jù)勾股定理得出BM2=AM2+AB2,即可列方程求得.

1)證明:∵四邊形ABCD是矩形,

ADBC,∠A=90°,

∴∠MDO=NBO,∠DMO=BNO,

∵在△DMO和△BNO中,

DMO=∠BNO,∠MDO=∠NBO,OBOD,

∴△DMO≌△BNOAAS),

OM=ON

OB=OD,

∴四邊形BMDN是平行四邊形,

MNBD,

∴平行四邊形BMDN是菱形.

2)∵四邊形BMDN是菱形,∴MB=MD,

設(shè)MD長(zhǎng)為x,則MB=DM=x,

RtAMB中,BM2=AM2+AB2

x2=8-x2+42,

解得:x=5,

答:MD長(zhǎng)為5

故答案為:(1)見解析;(2MD長(zhǎng)為5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,AB=AC,A=36°.

1)作∠ABC的平分線BD,交AC于點(diǎn)D(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);

(2)在(1)條件下,比較線段DA與BC的大小關(guān)系(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ACBC于C,BC=a,CA=b,AB=c,下列圖形中O與ABC的某兩條邊或三邊所在的直線相切,則O的半徑為的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點(diǎn)O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向右移動(dòng)3個(gè)單位長(zhǎng)度,再向左移動(dòng)5個(gè)單位長(zhǎng)度,可以看到終點(diǎn)表示的數(shù)是-2,已知點(diǎn)A,B是數(shù)軸上的點(diǎn),請(qǐng)參照?qǐng)D并思考,完成下列各題.

(1)如果點(diǎn)A表示數(shù)-3,將點(diǎn)A向右移動(dòng)7個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是_____,A,B兩點(diǎn)間的距離是_____;

(2)如果點(diǎn)A表示數(shù)3,將A點(diǎn)向左移動(dòng)7個(gè)單位長(zhǎng)度,再向右移動(dòng)5個(gè)單位長(zhǎng)度,那么終點(diǎn)表示的數(shù)是_____,A,B兩點(diǎn)間的距離為_____;

(3)如果點(diǎn)A表示數(shù)-4,將A點(diǎn)向右移動(dòng)168個(gè)單位長(zhǎng)度,再向左移動(dòng)256個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是_____,A、B兩點(diǎn)間的距離是_____;

(4)一般地,如果A點(diǎn)表示的數(shù)為m,將A點(diǎn)向右移動(dòng)n個(gè)單位長(zhǎng)度,再向左移動(dòng)p個(gè)單位長(zhǎng)度,那么請(qǐng)你猜想終點(diǎn)B表示什么數(shù)?A,B兩點(diǎn)間的距離為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中兩定點(diǎn)A(﹣1,0)、B(4,0),拋物線y=ax2+bx﹣2(a≠0)過點(diǎn)A,B,頂點(diǎn)為C,點(diǎn)P(m,n)(n<0)為拋物線上一點(diǎn).

(1)求拋物線的解析式和頂點(diǎn)C的坐標(biāo);

(2)當(dāng)∠APB為鈍角時(shí),求m的取值范圍;

(3)若m>,當(dāng)∠APB為直角時(shí),將該拋物線向左或向右平移t(0<t<個(gè)單位,點(diǎn)C、P平移后對(duì)應(yīng)的點(diǎn)分別記為C′、P′,是否存在t,使得首位依次連接A、B、P′、C′所構(gòu)成的多邊形的周長(zhǎng)最短?若存在,求t的值并說明拋物線平移的方向;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,PA、PB為⊙O的切線,M、NPA、AB的中點(diǎn),連接MN交⊙O點(diǎn)C,連接PC交⊙OD,連接NDPBQ,求證:MNQP為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,證明定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.

已知:點(diǎn)D、E分別是ABC的邊AB、AC的中點(diǎn).

求證:DEBC,DEBC

查看答案和解析>>

同步練習(xí)冊(cè)答案