【題目】已知關(guān)于x的一元二次方程x2﹣x+a﹣1=0.
(1)當(dāng)a=﹣11時(shí),解這個(gè)方程;
(2)若這個(gè)方程有兩個(gè)實(shí)數(shù)根x1,x2,求a的取值范圍;
(3)若方程兩個(gè)實(shí)數(shù)根x1,x2滿足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.
【答案】(1)(2)(3)-4
【解析】分析:(1)根據(jù)一元二次方程的解法即可求出答案;
(2)根據(jù)判別式即可求出a的范圍;
(3)根據(jù)根與系數(shù)的關(guān)系即可求出答案.
詳解:(1)把a=﹣11代入方程,得x2﹣x﹣12=0,(x+3)(x﹣4)=0,x+3=0或x﹣4=0,∴x1=﹣3,x2=4;
(2)∵方程有兩個(gè)實(shí)數(shù)根,∴△≥0,即(﹣1)2﹣4×1×(a﹣1)≥0,解得;
(3)∵是方程的兩個(gè)實(shí)數(shù)根,.
∵[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,∴,把 代入,得:[2+a﹣1][2+a﹣1]=9,即(1+a)2=9,解得:a=﹣4,a=2(舍去),所以a的值為﹣4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)先化簡(jiǎn),再求值:x2﹣2(x2﹣3xy)+3(y2﹣2xy)﹣2y2,其中x=,y=﹣1;
(2)已知x+y=6,xy=﹣1,求代數(shù)式2(x+1)﹣(3xy﹣2y)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2的對(duì)稱軸是直線x=1,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D,交直線BC于點(diǎn)E.
(1)求拋物線解析式;
(2)若點(diǎn)P在第一象限內(nèi),當(dāng)OD=4PE時(shí),求四邊形POBE的面積;
(3)在(2)的條件下,若點(diǎn)M為直線BC上一點(diǎn),點(diǎn)N為平面直角坐標(biāo)系內(nèi)一點(diǎn),是否存在這樣的點(diǎn)M和點(diǎn)N,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(概念學(xué)習(xí))
規(guī)定:求若干個(gè)相同的有理數(shù)(均不等于0)的除法運(yùn)算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作“﹣3的圈4次方”,一般地,把n個(gè)a(a≠0)記作a,讀作“a的圈n次方”.
(初步探究)
(1)直接寫出計(jì)算結(jié)果:2③= ,(﹣)⑤= ;
(深入思考)
我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?
(1)試一試:仿照上面的算式,將下列運(yùn)算結(jié)果直接寫成乘方的形式.
(﹣3)④= ;5⑥= ;(﹣)⑩= .
(2)想一想:將一個(gè)非零有理數(shù)a的圈n次方寫成乘方的形式等于 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為3 cm,P、Q分別從B、A出發(fā)沿BC,AD方向運(yùn)動(dòng),P點(diǎn)的運(yùn)動(dòng)速度是1 cm/秒,Q點(diǎn)的運(yùn)動(dòng)速度是2 cm/秒。連接AP并過Q作QE⊥AP垂足為E。
(1)求證:△ABP∽△QEA ;
(2)當(dāng)運(yùn)動(dòng)時(shí)間t為何值時(shí),△ABP≌△QEA;
(3)設(shè)△QEA的面積為y,用運(yùn)動(dòng)時(shí)間t表示△QEA的面積y。(不要求考慮t的取值范圍)
(提示:解答(2)(3)時(shí)可不分先后)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,正方形ABCD中,,繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊長(zhǎng)分別交CB、DC或它們的延長(zhǎng)線于點(diǎn)MN,于點(diǎn)H.
如圖,當(dāng)點(diǎn)A旋轉(zhuǎn)到時(shí),請(qǐng)你直接寫出AH與AB的數(shù)量關(guān)系;
如圖,當(dāng)繞點(diǎn)A旋轉(zhuǎn)到時(shí),中發(fā)現(xiàn)的AH與AB的數(shù)量關(guān)系還成立嗎?如果不成立請(qǐng)寫出理由,如果成立請(qǐng)證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某儲(chǔ)運(yùn)部緊急調(diào)撥一批物資,調(diào)進(jìn)物資共用4小時(shí),調(diào)進(jìn)物資2小時(shí)后開始調(diào)出物資(調(diào)進(jìn)物資與調(diào)出物資的速度均保持不變).儲(chǔ)運(yùn)部庫(kù)存物資S(噸)與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示,這批物資從開始調(diào)進(jìn)到全部調(diào)出需要的時(shí)間是_________小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角坐標(biāo)系中,一次函數(shù)的圖象l與y軸交于點(diǎn)A(0 , 2),與一次函數(shù)y=x﹣3的圖象l交于點(diǎn)E(m ,﹣5).
(1)m=__________;
(2)直線l與x軸交于點(diǎn)B,直線l與y軸交于點(diǎn)C,求四邊形OBEC的面積;
(3)如圖2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的邊PQ在x軸上平移,若矩形MNPQ與直線l或l有交點(diǎn),直接寫出a的取值范圍_____________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【閱讀理解】對(duì)于任意正實(shí)數(shù)a、b,因?yàn)?/span>≥0,所以 ≥0,所以≥2,只有當(dāng)時(shí),等號(hào)成立.
【獲得結(jié)論】在≥2(a、b均為正實(shí)數(shù))中,若為定值,則≥2,只有當(dāng)時(shí), 有最小值2.
根據(jù)上述內(nèi)容,回答下列問題:若>0,只有當(dāng)= 時(shí), 有最小值 .
【探索應(yīng)用】如圖,已知A(-3,0),B(0,-4),P為雙曲線(>0)上的任意一點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說明此時(shí)四邊形ABCD的形狀.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com