如圖,在直角坐標(biāo)系xOy中,直線與x軸,y軸分別交于A,B兩點,以AB為邊在第二象限內(nèi)作矩形(1,-4),使
(1)求點A,點B的坐標(biāo),并求邊AB的長;
(2)過點D作DH⊥x軸,垂足為H,求證:△ADH∽△BAO;
(3)求點D的坐標(biāo).

【答案】分析:(1)由直線的解析式,可得到點A、B的坐標(biāo),根據(jù)勾股定理,即可得到AB的長;
(2)由垂直和矩形的性質(zhì),可得∠ADH+∠DAH=90°,∠BAO+∠DAH=90°,即∠BAO=∠ADH,又∵∠AOB=∠DHA=90°,即可證得;
(3)由△ADH∽△BAO,可得到,代入數(shù)值,即可求得DH、AH的長,即可得到.
解答:(1)解:∵直線,
∴可得A(-4,0),B(0,2),
∴在Rt△AOB中,==

(2)證明:∵DH⊥x軸,四邊形ABCD是矩形,
∴∠ADH+∠DAH=90°,∠BAO+∠DAH=90°,
∴∠BAO=∠ADH,
又∵∠AOB=∠DHA=90°,
∴△ADH∽△BAO.

(3)解:∵△ADH∽△BAO,
,
,
∴DH=2,AH=1,
∴D(-5,2).
點評:本題是一次函數(shù)的應(yīng)用,主要考查了矩形的性質(zhì),相似三角形的判定和性質(zhì)以及一次函數(shù)的綜合應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,⊙M與y軸相切于點C,與x軸交于A(x1,0),B(x2,0)兩點,其中x1,x2是方程x2-10x+16=0的兩個根,且x1<x2,連接MC,過A、B、C三點的拋物線的頂點為N.
(1)求過A、B、C三點的拋物線的解析式;
(2)判斷直線NA與⊙M的位置關(guān)系,并說明理由;
(3)一動點P從點C出發(fā),以每秒1個單位長的速度沿CM向點M運動,同時,一動點Q從點B出發(fā),沿射線BA以每秒4個單位長度的速度運動,當(dāng)P運動到M點時,兩動點同時停止運動,當(dāng)時間t為何值時,以Q、O、C為頂點的三角形與△PCO相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:在直角坐標(biāo)系中放入一邊長OC為6的矩形紙片ABCO,將紙翻折后,使點B恰好落在x軸上,記為B',折痕為CE,已知tan∠OB′C=
3
4

(1)求出B′點的坐標(biāo);
(2)求折痕CE所在直線的解析式;
(3)作B′G∥AB交CE于G,已知拋物線y=
1
8
x2-
14
3
通過G點,以O(shè)為圓心OG的長為精英家教網(wǎng)半徑的圓與拋物線是否還有除G點以外的交點?若有,請找出這個交點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已如:如圖,在直角坐標(biāo)系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,AB為⊙C的直徑,PA切⊙O于點A,交x軸的負(fù)半軸于點P,連接PC交OA于點D.
(1)求證:PC⊥OA;
(2)若點P在x軸的負(fù)半軸上運動,原題的其他條件不變,設(shè)點P的坐標(biāo)為(x,0),四邊形
POCA的面積為S,求S與點P的橫坐標(biāo)x之間的函數(shù)關(guān)系式;
(3)在(2)的情況下,分析并判斷是否存在這樣的一點P,使S四邊形POCA=S△AOB,若存在,直接寫出點P的坐標(biāo)(不寫過程);若不存在,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:在直角坐標(biāo)系中描出A(-4,-4),B(1,-4),C(2,-1),D(-3,-1)四個點.
(1)順次連接A,B,C,D四個點組成的圖形是什么圖形?
(2)畫出(1)中圖形分別向上5個單位向右3個單位后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,A的坐標(biāo)為(a,0),D的坐標(biāo)為(0,b),且a、b滿足
a+2
+(b-4)2=0

(1)求A、D兩點的坐標(biāo);
(2)以A為直角頂點作等腰直角三角形△ADB,直接寫出B的坐標(biāo);
(3)在(2)的條件下,當(dāng)點B在第四象限時,將△ADB沿直線BD翻折得到△A′DB,點P為線段BD上一動點(不與B、D重合),PM⊥PA交A′B于M,且PM=PA,MN⊥PB于N,請?zhí)骄浚篜D、PN、BN之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案