【題目】如圖,已知關(guān)于x的二次函數(shù)y=x2+mx的圖象經(jīng)過(guò)原點(diǎn)O,并且與x軸交于點(diǎn)A,對(duì)稱(chēng)軸為直線x=1.
(1)常數(shù)m= , 點(diǎn)A的坐標(biāo)為;
(2)若關(guān)于x的一元二次方程x2+mx=n(n為常數(shù))有兩個(gè)不相等的實(shí)數(shù)根,求n的取值范圍;
(3)若關(guān)于x的一元二次方程x2+mx﹣k=0(k為常數(shù))在﹣2<x<3的范圍內(nèi)有解,求k的取值范圍.
【答案】
(1)-2;(2,0)
(2)解:∵一元二次方程x2﹣2x=n有兩個(gè)不相等的實(shí)數(shù)根,
∴△=4+4n>0,
n>﹣1
(3)解:一元二次方程x2﹣2x﹣k=0有解,
則△=4+4k≥0,
k≥﹣1,
方程的解為:x=1± ,
∵方程在﹣2<x<3的范圍內(nèi)有解,
1﹣ >﹣2,k<8,
1+ <3,k<3,
∴﹣1≤k<8
【解析】解:(1)∵對(duì)稱(chēng)軸為直線x=1, ∴﹣ =1,m=﹣2,
則二次函數(shù)解析式為y=x2﹣2x,
x2﹣2x=0,x=0或2,
∴點(diǎn)A的坐標(biāo)為 (2,0),
∴常數(shù)m=﹣2,點(diǎn)A的坐標(biāo)為 (2,0);
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí),掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在數(shù)軸l上,一動(dòng)點(diǎn)Q從原點(diǎn)O出發(fā),沿直線l以每秒鐘2個(gè)單位長(zhǎng)度的速度來(lái)回移動(dòng),其移動(dòng)方式是先向右移動(dòng)1個(gè)單位長(zhǎng)度,再向左移動(dòng)2個(gè)單位長(zhǎng)度,又向右移動(dòng)3個(gè)單位長(zhǎng)度,再向左移動(dòng)4個(gè)單位長(zhǎng)度,又向右移動(dòng)5個(gè)單位長(zhǎng)度…
(1)求出5秒鐘后動(dòng)點(diǎn)Q所處的位置;
(2)如果在數(shù)軸l上還有一個(gè)定點(diǎn)A,且A與原點(diǎn)O相距20個(gè)單位長(zhǎng)度,問(wèn):動(dòng)點(diǎn)Q從原點(diǎn)出發(fā),可能與點(diǎn)A重合嗎?若能,則第一次與點(diǎn)A重合需多長(zhǎng)時(shí)間?若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】仔細(xì)觀察下面由“※”組成的圖案和算式,解答問(wèn)題:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)請(qǐng)計(jì)算:
1+3+5+7+9+ … +19= ;
(2)請(qǐng)猜想:
1+3+5+7+9+ … +(2n-1)+(2n+1)+(2n+3)= ;
(3)請(qǐng)用上述規(guī)律計(jì)算:
103+105+107+ … +2013+2015
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校八年級(jí)男生的體能情況,體育老師隨機(jī)抽取部分男生進(jìn)行引體向上測(cè)試,并對(duì)成績(jī)進(jìn)行了統(tǒng)計(jì),繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖.
(1)本次抽測(cè)的男生有 人,抽測(cè)成績(jī)的眾數(shù)是 ;
(2)請(qǐng)你將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若規(guī)定引體向上5次以上(含5次)為體能達(dá)標(biāo),則該校400名八年級(jí)男生中估計(jì)有多少人體能達(dá)標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面各小題括號(hào)里的數(shù),均是它前面的方程的解的是( 。
A. 3x﹣1=5(2) B. +1=0(﹣5,﹣7)
C. x2﹣3x=4(4,1) D. x(x﹣2)(x+4)=0(2,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖正方形ABCD的邊長(zhǎng)為2,點(diǎn)E、F、G、H分別在AD、AB、BC、CD上的點(diǎn),且AE=BF=CG=DH,分別將△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,得四邊形MNKP,設(shè)AE=x,S四邊形MNKP=y,則y關(guān)于x的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠B=90°,∠C=30°,點(diǎn)D從C點(diǎn)出發(fā)沿著CA方向以2個(gè)單位每秒的速度向終點(diǎn)A運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以1個(gè)單位每秒的速度向終點(diǎn)B運(yùn)動(dòng)。設(shè)點(diǎn)D,E的運(yùn)動(dòng)時(shí)間為t秒,DF⊥BC于F
(1)求證:AE=DF;
(2)如圖2,連接EF,
①是否存在t,使得四邊形AEFD為菱形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由
②連接DE,當(dāng)△DEF是直角三角形時(shí),求t的值
圖1 圖2 備用圖 備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Rt△ABC中,∠C=90°,AC=BC,直線m經(jīng)過(guò)點(diǎn)C,分別過(guò)點(diǎn)A,B作直線m的垂線,垂足分別為點(diǎn)E,F(xiàn),若AE=3,AC=5,則線段EF的長(zhǎng)為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com