【題目】如圖:在等邊三角形ABC中,點(diǎn)E在線段AB上,點(diǎn)DCB的延長(zhǎng)線上,

1)試證明△DEC是等腰三角形;(2)在圖中找出與AE相等的線段,并證明

【答案】(1)證明見(jiàn)解析;(2)BD=AE,證明見(jiàn)解析.

【解析】

(1)根據(jù)等邊三角形的性質(zhì)可得∠ABC=ACB,由三角形外角的性質(zhì)可得∠ABC=∠D+∠DEB,再根據(jù)∠ACB=∠ACE+∠ECB,∠ACE=∠DEB,推得∠D=∠ECB即可得到結(jié)論;

(2)圖中BD=AE,證明過(guò)程為:在AC上截取AF=AE,則可得△AEF是等邊三角形,通過(guò)推導(dǎo)得出BE=CF,AE=EF,∠EFC=∠DBE,然后利用ASA證明△DEB△ECF,根據(jù)全等三角形的性質(zhì)以及等量代換即可得.

(1)△ABC是等邊三角形,

∠ABC=ACB=60°,

∠ABC△DBE的外角,

ABC=∠D+∠DEB,

∵∠ACB=∠ACE+∠ECB∠ACE=∠DEB,

D=∠ECB,

ED=EC

△DEC是等腰三角形;

(2)BD=AE,證明如下:

如圖,在AC上截取AF=AE

△ABC是等邊三角形,

∴∠A=∠ABC=60°,AB=AC,

∴∠EBD=120°,AB-AE=AC-AF,△AEF是等邊三角形,

∴BE=CF,AE=EF,∠AFE=60°,

∴∠EFC=120°,

∴∠EFC=∠DBE,

△DBE△EFC中,

△DEB△ECF,

∴BD=EF

BD=AE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1) 知識(shí)儲(chǔ)備

①如圖 1,已知點(diǎn) P 為等邊△ABC 外接圓的弧BC 上任意一點(diǎn).求證:PB+PC= PA.

②定義:在△ABC 所在平面上存在一點(diǎn) P,使它到三角形三頂點(diǎn)的距離之和最小,則稱點(diǎn) P 為△ABC

的費(fèi)馬點(diǎn),此時(shí) PA+PB+PC 的值為△ABC 的費(fèi)馬距離.

(2)知識(shí)遷移

①我們有如下探尋△ABC (其中∠A,∠B,∠C 均小于 120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:

如圖 2,在△ABC 的外部以 BC 為邊長(zhǎng)作等邊△BCD 及其外接圓,根據(jù)(1)的結(jié)論,易知線段____的長(zhǎng)度即為△ABC 的費(fèi)馬距離.

②在圖 3 中,用不同于圖 2 的方法作出△ABC 的費(fèi)馬點(diǎn) P(要求尺規(guī)作圖).

(3)知識(shí)應(yīng)用

①判斷題(正確的打√,錯(cuò)誤的打×):

ⅰ.任意三角形的費(fèi)馬點(diǎn)有且只有一個(gè)__________;

ⅱ.任意三角形的費(fèi)馬點(diǎn)一定在三角形的內(nèi)部__________.

②已知正方形 ABCD,P 是正方形內(nèi)部一點(diǎn),且 PA+PB+PC 的最小值為,求正方形 ABCD 的

邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸,y軸上,連OB,將紙片OABC沿OB折疊,使點(diǎn)A落在A′的位置,若OB=,tanBOC=,則點(diǎn)A′的坐標(biāo)( 。

A. , B. (﹣, C. (﹣, D. (﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,EF、GH分別是AB、BC、CD、DA邊上的中點(diǎn),連結(jié)AC、BD,回答問(wèn)題

1)對(duì)角線AC、BD滿足條件_____時(shí),四邊形EFGH是矩形.

2)對(duì)角線ACBD滿足條件_____時(shí),四邊形EFGH是菱形.

3)對(duì)角線AC、BD滿足條件_____時(shí),四邊形EFGH是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某摩托車廠本周計(jì)劃每日生產(chǎn)450輛摩托車,由于工人實(shí)行輪休, 每日上班人數(shù)不一定相等,實(shí)際每日生產(chǎn)量與計(jì)劃量相比情況如下表: [增加的輛數(shù)為正數(shù),減少的輛數(shù)為負(fù)數(shù)]

星期

增減

5

+7

3

+4

+10

9

25

1)本周星期六生產(chǎn)多少輛摩托車?

2)本周總產(chǎn)量與計(jì)劃產(chǎn)量相比,是增加了還是減少了?為什么?

3)產(chǎn)量最多的那天比產(chǎn)量最少的那天多生產(chǎn)多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD、BC的中點(diǎn),EF分別是線段BMCM的中點(diǎn).

1)求證:BMCM;

2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

3)當(dāng)矩形ABCD的長(zhǎng)和寬滿足什么條件時(shí),四邊形MENF是正方形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的中線BE,CD相交于點(diǎn)O,若△DOE的面積為1cm2,則△ABC的面積為(  )

A. 12B. 8C. 6D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)內(nèi)有一塊如圖所示的三角形空地ABC,計(jì)劃將這塊空地建成一個(gè)花園,以美化小區(qū)環(huán)境,預(yù)計(jì)花園每平方米造價(jià)為25元,小區(qū)修建這個(gè)花園需要投資多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案