在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為192m2,  求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.

(1)12m或16m;(2)195.

解析試題分析:(1)方程的應(yīng)用解題關(guān)鍵是找出等量關(guān)系,列出方程求解. 本題等量關(guān)系為:矩形的面積為192.
(2)由在P處有一棵樹與墻CD,AD的距離分別是15m和6m,求出x的取值范圍,根據(jù)二次的性質(zhì)求解即可.
試題解析:(1)∵AB=xm,∴BC=.
根據(jù)題意,得,解得.
∴x的值為12m或16m.
(2)∵根據(jù)題意,得,∴.
,∴當時,S隨x的增大而增大.
∴當時,花園面積S最大,最大值為.
考點:1.方程的應(yīng)用(幾何問題);2.二次函數(shù)的應(yīng)用(實際問題);3.不等式的應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線y=3ax2+2bx+c
(1)若a=b=1,c=-1求該拋物線與x軸的交點坐標;
(2)若a=,c=2+b且拋物線在區(qū)間上的最小值是-3,求b的值;
(3)若a+b+c=1,是否存在實數(shù)x,使得相應(yīng)的y的值為1,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知關(guān)于x一元二次方程有兩個不相等的實數(shù)根
(1)求k取值范圍;
(2)當k最小的整數(shù)時,求拋物線的頂點坐標以及它與x軸的交點坐標;
(3)將(2)中求得的拋物線在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象.請你畫出這個新圖象,并求出新圖象與直線有三個不同公共點時m值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,已知二次函數(shù)的圖象與x軸的正半軸交于A 、B兩點(點A在點B的左側(cè)),與y軸交于點C .點A和點B間的距離為2, 若將二次函數(shù)的圖象沿y軸向上平移3個單位時,則它恰好過原點,且與x軸兩交點間的距離為4.
(1)求二次函數(shù)的表達式;
(2)在二次函數(shù)的圖象的對稱軸上是否存在一點P,使點P到B、C兩點距離之差最大?若存在,求出點P坐標;若不存在,請說明理由;
(3)設(shè)二次函數(shù)的圖象的頂點為D,在x軸上是否存在這樣的點F,使得?若存在,求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

拋物線(b,c均為常數(shù))與x軸交于兩點,與y軸交于點
(1)求該拋物線對應(yīng)的函數(shù)表達式;
(2)若P是拋物線上一點,且點P到拋物線的對稱軸的距離為3,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,A是拋物線上的一個動點,且點A在第一象限內(nèi).AE⊥y軸于點E,點B坐標為(O,2),直線AB交軸于點C,點D與點C關(guān)于y軸對稱,直線DE與AB相交于點F,連結(jié)BD.設(shè)線段AE的長為m,△BED的面積為S.
(1)當時,求S的值.
(2)求S關(guān)于的函數(shù)解析式.
(3)①若S=時,求的值;
②當m>2時,設(shè),猜想k與m的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

若兩個二次函數(shù)圖象的頂點,開口方向都相同,則稱這兩個二次函數(shù)為“同簇二次函數(shù)”。
(1)請寫出兩個為“同簇二次函數(shù)”的函數(shù);
(2)已知關(guān)于x的二次函數(shù)y1=2x2—4mx+2m2+1,和y2=ax2+bx+5,其中y1的圖象經(jīng)過點A(1,1),若y1+y2為y1為“同簇二次函數(shù)”,求函數(shù)y2的表達式,并求當0≤x≤3時,y2的最大值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某瓜果基地市場部為指導該基地某種蔬菜的生產(chǎn)和銷售,對往年的市場行情和生產(chǎn)情況進行了調(diào)查,提供了如下兩個信息圖,如甲、乙兩圖。
注:甲、乙兩圖中的A、B、C、D、E、F、G、H所對應(yīng)的縱坐標分別指相應(yīng)月份每千克該種蔬菜的售價和成本(生產(chǎn)成本6月份最低,甲圖的圖象是線段,乙圖的圖象是拋物線的一部分)。請你根據(jù)圖象提供的信息說明:

(1)在3月份出售這種蔬菜,每千克的收益是多少元?(收益=售價-成本)
(2)哪個月出售這種蔬菜,每千克的收益最大?最大收益是多少?說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1,已知A(3,0)、B(4,4)、原點O(0,0)在拋物線y=ax2+bx+c (a≠0)上.

(1)求拋物線的解析式.
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個交點D,求m的值及點D的坐標.
(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點P的坐標(點P、O、D分別與點N、O、B對應(yīng))

查看答案和解析>>

同步練習冊答案