在平面直角坐標(biāo)系xOy中,已知二次函數(shù)的圖象與x軸的正半軸交于A 、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C .點(diǎn)A和點(diǎn)B間的距離為2, 若將二次函數(shù)的圖象沿y軸向上平移3個單位時,則它恰好過原點(diǎn),且與x軸兩交點(diǎn)間的距離為4.
(1)求二次函數(shù)的表達(dá)式;
(2)在二次函數(shù)的圖象的對稱軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出點(diǎn)P坐標(biāo);若不存在,請說明理由;
(3)設(shè)二次函數(shù)的圖象的頂點(diǎn)為D,在x軸上是否存在這樣的點(diǎn)F,使得?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.

(1);(2)存在,(2,3);(3)存在,(-1,0)或(5,0).

解析試題分析:(1)根據(jù)平移的性質(zhì),得到對稱軸承,從而由求得A,B的坐標(biāo),應(yīng)用待定系數(shù)法即可求得二次函數(shù)的表達(dá)式.
(2)根據(jù)軸對稱的性質(zhì),知直線AC與直線x=2的交點(diǎn)P就是到B、C兩點(diǎn)距離之差最大的點(diǎn),因此求出直線AC的方程,即可求得點(diǎn)P坐標(biāo).
(3)首先證明△BCD是直角三角形并求出BC,BD的值,得到,從而只要求出使時點(diǎn)F的坐標(biāo)即可.
試題解析:(1)∵平移后的函數(shù)圖象過原點(diǎn)且與x軸兩交點(diǎn)間的距離為4,
∴平移后的函數(shù)圖象與x軸兩交點(diǎn)坐標(biāo)為(0,0),(4,0)或(0,0),(-4,0).
∴它的對稱軸為直線x=2或x=-2.
∵拋物線與x軸的正半軸交于A、B兩點(diǎn),
∴拋物線關(guān)于直線x=2對稱.
∵它與x軸兩交點(diǎn)間的距離為2,且點(diǎn)A 在點(diǎn)B的左側(cè),
∴其圖象與x軸兩交點(diǎn)的坐標(biāo)為A(1,0)、B(3,0).
由題意知,二次函數(shù)的圖象過C(0,-3),
∴設(shè)
,解得
∴二次函數(shù)的表達(dá)式為
(2)∵點(diǎn)B關(guān)于直線x=2的對稱點(diǎn)為A(1,0),
設(shè)直線AC的解析式為,
,解得
∴直線AC的解析式為
直線AC與直線x=2的交點(diǎn)P就是到B、C兩點(diǎn)距離之差最大的點(diǎn).
∵當(dāng)x=2時,y=3,∴點(diǎn)P的坐標(biāo)為(2,3) .
(3)在x軸上存在這樣的點(diǎn)F,使得, 理由如下:
拋物線的頂點(diǎn)D的坐標(biāo)為(2,1),
設(shè)對稱軸與x軸的交點(diǎn)為點(diǎn)E,
中,∵,∴
中,∵,∴

中,∵,∴
軸,,∴
∵E(2,0),
∴符合題意的點(diǎn)F的坐標(biāo)為F1(-1,0)或F2(5,0).

考點(diǎn):1.二次函數(shù)綜合題;2.平移問題;3.待定系數(shù)法的應(yīng)用;4.曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系;5.軸對稱的應(yīng)用(距離差最大問題);6.二次函數(shù)的性質(zhì);7.銳角三角函數(shù)定義;8.分類思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10元/千克,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于18元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系式.當(dāng)銷售價(jià)為多少時,每天的銷售利潤最大?最大利潤是多少?
(3)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣(m+n)x+mn(m>n)與x軸相交于A、B兩點(diǎn)(點(diǎn)A位于點(diǎn)B的右側(cè)),與y軸相交于點(diǎn)C.
(1)若m=2,n=1,求A、B兩點(diǎn)的坐標(biāo);
(2)若A、B兩點(diǎn)分別位于y軸的兩側(cè),C點(diǎn)坐標(biāo)是(0,﹣1),求∠ACB的大;
(3)若m=2,△ABC是等腰三角形,求n的值.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知二次函數(shù)(a≠0)的圖象經(jīng)過點(diǎn)A,點(diǎn)B.
(1)求二次函數(shù)的表達(dá)式;
(2)若反比例函數(shù)(x>0)的圖象與二次函數(shù)(a≠0)的圖象在第一象限內(nèi)交于點(diǎn),落在兩個相鄰的正整數(shù)之間,請你直接寫出這兩個相鄰的正整數(shù);
(3)若反比例函數(shù)(x>0,k>0)的圖象與二次函數(shù)(a≠0)的圖象在第一象限內(nèi)交于點(diǎn),且,試求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)的圖象交x軸于A(﹣1,0),B(2,0),交y軸于C(0,﹣2),過A,C畫直線.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P在x軸正半軸上,且PA=PC,求OP的長;
(3)點(diǎn)M在二次函數(shù)圖象上,以M為圓心的圓與直線AC相切,切點(diǎn)為H.
①若M在y軸右側(cè),且△CHM∽△AOC(點(diǎn)C與點(diǎn)A對應(yīng)),求點(diǎn)M的坐標(biāo);
②若⊙M的半徑為 ,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線與拋物線y=ax2+bx-3(a≠0)交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為5.點(diǎn)P是直線AB下方的拋物線上的一動點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含m的代數(shù)式表示線段PD的長,并求出線段PD長的最大值;
②連結(jié)PB,線段PC把△PDB分成兩個三角形,是否存在適合的m的值,使這兩個三角形的面積比為1:2.若存在,直接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為192m2,  求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù).
(1)用配方法求其圖象的頂點(diǎn)C的坐標(biāo),并描述改函數(shù)的函數(shù)值隨自變量的增減而增減的情況;
(2)求函數(shù)圖象與x軸的交點(diǎn)A,B的坐標(biāo),及△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直角梯形OABC中,AB∥OC,點(diǎn)A坐標(biāo)為(0,6),點(diǎn)C坐標(biāo)為(3,0),BC=,一拋物線過點(diǎn)A、B、 C.
(1)填空:點(diǎn)B的坐標(biāo)為   
(2)求該拋物線的解析式;
(3)作平行于x軸的直線與x軸上方的拋物線交于點(diǎn)E 、F,以EF為直徑的圓恰好與x軸相切,求該圓的半徑.

查看答案和解析>>

同步練習(xí)冊答案