【題目】如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線;
(3)當BC=4時,求劣弧AC的長.

【答案】
(1)解:∵∠ABC與∠D都是弧AC所對的圓周角,

∴∠ABC=∠D=60°


(2)解:∵AB是⊙O的直徑,

∴∠ACB=90°.

∴∠BAC=30°,

∴∠BAE=∠BAC+∠EAC=30°+60°=90°,

即BA⊥AE,

∴AE是⊙O的切線


(3)解:如圖,連接OC,

∵∠ABC=60°,

∴∠AOC=120°,

∴劣弧AC的長為


【解析】(1)由圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,即可求得∠ABC的度數(shù);(2)由AB是⊙O的直徑,根據(jù)半圓(或直徑)所對的圓周角是直角,即可得∠ACB=90°,又由∠BAC=30°,易求得∠BAE=90°,則可得AE是⊙O的切線;(3)首先連接OC,易得△OBC是等邊三角形,則可得∠AOC=120°,由弧長公式,即可求得劣弧AC的長.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有三張正面分別標有數(shù)字:﹣1,1,2的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中抽出一張記下數(shù)字,放回洗勻后再從中隨機抽出一張記下數(shù)字.
(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結果;
(2)將第一次抽出的數(shù)字作為點的橫坐標x,第二次抽出的數(shù)字作為點的縱坐標y,求點(x,y)落在雙曲線y= 上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分在東營市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要35萬元,購買2臺電腦和1臺電子白板需要25萬元

1求每臺電腦、每臺電子白板各多少萬元?

2根據(jù)學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在股市交易中,每買、賣一次需付交易款的千分之七點五作為交易費用,某投資者以每股10元的價格買入某股票1 000股,下表為第一周內(nèi)每日該股票的漲跌情況(單位:元).

星期

每股漲跌

+2

+1.5

-0.5

-4.5

+2.5

(1)星期三收盤時,每股是多少元?

(2)本周內(nèi)每股最高價是多少元?最低價是多少元?

(3)若該投資者在星期五收盤前將股票全部賣出,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩組卡片共5張,A中三張分別寫有數(shù)字2,4,6,B中兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別.
(1)隨機地從A中抽取一張,求抽到數(shù)字為2的概率;
(2)隨機地分別從A、B中各抽取一張,請你用畫樹狀圖或列表的方法表示所有等可能的結果,現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?
(3)如果不公平請你修改游戲規(guī)則使游戲規(guī)則對甲乙雙方公平.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖長方形MNPQ是菜市民健身廣場的平面示意圖,它是由6個正方形拼成的長方形,中間最小的正方形A的邊長是1,觀察圖形特點可知長方形相對的兩邊是相等的(如圖中MN=PQ).正方形四邊相等.請根據(jù)這個等量關系,試計算長方形MNPQ的面積,結果為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知關于x的方程kx=11﹣2x有整數(shù)解,則負整數(shù)k的值為   

(2)若a+b+c=0,且abc,以下結論:

a>0,c>0;

②關于x的方程ax+b+c=0的解為x=1;

a2=(b+c2;

的值為02;

⑤在數(shù)軸上點A、B、C表示數(shù)a、b、c,若b<0,則線段AB與線段BC的大小關系是ABBC

其中正確的結論是   (填寫正確結論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形OABC的邊長為4,對角線相交于點P,拋物線L經(jīng)過O、P、A三點,點E是正方形內(nèi)的拋物線上的動點.

(1)建立適當?shù)钠矫嬷苯亲鴺讼担?/span>
①直接寫出O、P、A三點坐標;
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)在平面直角坐標系中,四邊形OBCD是正方形,且D(0,2),點E是線段OB延長線上一點,M是線段OB上一動點(不包括O、B),做MNDM,垂足為M,交∠CBE的平分線于點N.

(1)求點C的坐標;

(2)求證:MD=MN;

(3)如圖(2),連接DNBCF,連接FM,探究線段MF、CF、OM之間有什么數(shù)量關系?并證明你的結論.

圖(1) 圖(2)

查看答案和解析>>

同步練習冊答案