【題目】(本題滿分10分)在ABCD中,AC、BD交于點O,過點O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點,連結(jié)EG、GF、FH、HE.
(1)如圖①,試判斷四邊形EGFH的形狀,并說明理由;
(2)如圖②,當EF⊥GH時,四邊形EGFH的形狀是 ;
(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是 ;
(4)如圖④,在(3)的條件下,若AC⊥BD,試判斷四邊形EGFH的形狀,并說明理由.
【答案】(1)平行四邊形(2)菱形(3)菱形(4)正方形
【解析】
試題(1)由于平行四邊形對角線的交點是它的對稱中心,即可得出OE=OF、OG=OH;根據(jù)對角線互相平分的四邊形是平行四邊形即可判斷出EGFH的形狀;
(2)當EF⊥GH時,平行四邊形EGFH的對角線互相垂直平分,故四邊形EGFH是菱形;
(3)當AC=BD時,對四邊形EGFH的形狀不會產(chǎn)生影響,故結(jié)論同(2);
(4)當AC=BD且AC⊥BD時,四邊形ABCD是正方形,則對角線相等且互相垂直平分;
可通過證△BOG≌△COF,得OG=OF,從而證得菱形的對角線相等,根據(jù)對角線相等的菱形是正方形即可判斷出EGFH的形狀.
試題解析:解:(1)四邊形EGFH是平行四邊形.
證明:∵ ABCD的對角線AC、BD交于點O.
∴點O是ABCD的對稱中心.
∴EO=FO,GO=HO.
∴四邊形EGFH是平行四邊形.
(2)菱形.
(3)菱形.
(4)四邊形EGFH是正方形.
∵AC=BD,
∴ABCD是矩形.
又∵AC⊥BD,
∴ABCD是菱形.
∴ABCD是正方形,
∴∠BOC=90°,∠GBO=∠FCO=45°.OB=OC.
∵EF⊥GH ,
∴∠GOF=90°.
∴∠BOG=∠COF.
∴△BOG≌△COF.
∴OG=OF,
∴GH=EF.
由(1)知四邊形EGFH是平行四邊形,
又∵EF⊥GH,EF=GH.
∴四邊形EGFH是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,BE=CE,MN=1,線段MN的兩端點在CD、AD上滑動,當DM為( )時,△ABE與以D、M、N為頂點的三角形相似.
A.
B.
C. 或
D. 或
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE是△ABC邊AB的垂直平分線,分別交AB、BC于D、E。AE平分∠BAC. 設(shè)∠B = x(單位:度),∠C = y(單位:度).
(1)求y隨x變化的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)請討論當△ABC為等腰三角形時,∠B為多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一動點從原點O出發(fā),沿著箭頭所示方向,每次移動一個單位,依次得到點P1(0,1),P2(1,1),P3(1,0),P4(1,1),P5(2,1),P6(2,0)...,則點P2017的坐標是( )
A.(672,0)B.(672,1)C.(673,1)D.(673,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續(xù)行走10米來到C處,測得條幅的底部B的仰角為45°,此時小穎距大樓底端N處20米.已知坡面DE=20米,山坡的坡度i=1: (即tan∠DEM=1: ),且D,M,E,C,N,B,A在同一平面內(nèi),E,C,N在同一條直線上,求條幅的長度(結(jié)果精確到1米)(參考數(shù)據(jù): ≈1.73, ≈1.41)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索研究:已知:△ABC和△CDE都是等邊三角形.
(1)如圖1,若點A、C、E在一條直線上時,我們可以得到結(jié)論:線段AD與BE的數(shù)量關(guān)系為: ,線段AD與BE所成的銳角度數(shù)為 °;
(2)如圖2,當點A、C、E不在一條直線上時,請證明(1)中的結(jié)論仍然成立;
靈活運用:
如圖3,某廣場是一個四邊形區(qū)域ABCD,現(xiàn)測得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,試求水池兩旁B、D兩點之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】郵遞員騎摩托車從郵局出發(fā),先向南騎行2km到達A村,繼續(xù)向南騎行3km到達B 村,然后向北騎行9km到C村,最后回到郵局.
(1)以郵局為原點,以向北方向為正方向,用1個單位長度表示1km,請你在數(shù)軸上表示出A、B、C三個村莊的位置;
(2)C村離A村有多遠?
(3)若摩托車每100km耗油3升,這趟路共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店進行店慶活動,決定購進甲、乙兩種紀念品,若購進甲種紀念品1件,乙種紀念品2件,需要160元;購進甲種紀念品2件,乙種紀念品3件,需要280元.
(1)購進甲乙兩種紀念品每件各需要多少元?
(2)該商場決定購進甲乙兩種紀念品100件,并且考慮市場需求和資金周轉(zhuǎn),用于購買這些紀念品的資金不少于6300元,同時又不能超過6430元,則該商場共有幾種進貨方案?
(3)若銷售每件甲種紀念品可獲利30元,每件乙種紀念品可獲利12元,在第(2)問中的各種進貨方案中,哪種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com