【題目】如圖,拋物線經(jīng)過三點(diǎn)A(1,0),B(4,0),C(0,﹣2).
(1)求出拋物線的解析式;
(2)P是拋物線上一動點(diǎn),過P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以B,P,M為頂點(diǎn)的三角形與△OBC相似(相似比不為1)?若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】(1)此拋物線的解析式為.(2)存在.符合條件的點(diǎn)P為(2,1)或(5,﹣2)或(﹣3,﹣14).
【解析】
試題分析:(1)本題需先根據(jù)已知條件,過C點(diǎn),設(shè)出該拋物線的解析式為y=ax2+bx﹣2,再根據(jù)過A,B兩點(diǎn),即可得出結(jié)果.
(2)本題首先判斷出存在,首先設(shè)出橫坐標(biāo)和縱坐標(biāo),從而得出PA的解析式,再分三種情況進(jìn)行討論,當(dāng)=時(shí)和時(shí),當(dāng)P,C重合時(shí),△APM≌△ACO,分別求出點(diǎn)P的坐標(biāo)即可.
解:(1)∵該拋物線過點(diǎn)C(0,﹣2),
∴可設(shè)該拋物線的解析式為y=ax2+bx﹣2.
將A(1,0),B(4,0)代入,
得,解得,
∴此拋物線的解析式為.
(2)存在.如圖,設(shè)P點(diǎn)的橫坐標(biāo)為m,
則P點(diǎn)的縱坐標(biāo)為﹣m2+m﹣2,
當(dāng)1<m<4時(shí),AM=4﹣m,PM=﹣﹣m2+m﹣2,
又∵∠COA=∠PMA=90°,
∴①當(dāng)=時(shí),
∵C在拋物線上,
∴OC=2,
∵OA=4,
∴==2時(shí),
∴△APM∽△ACO,
即4﹣m=2(﹣m2+m﹣2),
解得m1=2,m2=4(舍去),
∴P(2,1).
②當(dāng)時(shí),△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,
解得m1=4,m2=5(均不合題意,舍去)
∴當(dāng)1<m<4時(shí),P(2,1),
當(dāng)m>4時(shí),AM=m﹣4,PM=m2﹣m+2,
①,②=時(shí),
把P(m,﹣m2+m﹣2),代入得:2(﹣m2+m﹣2)=m﹣4,2(m﹣4)=﹣m2+m﹣2,
解得:第一個(gè)方程的解是m=﹣2﹣2<4(舍去)m=﹣2+2<4(舍去),
第二個(gè)方程的解是m=5,m=4(舍去)
求出m=5,=﹣m2+m﹣2=﹣2,
則P(5,﹣2),
當(dāng)m<1時(shí),AM=4﹣m,PM=﹣m2+m﹣2,
①,②=時(shí),
則:2(m2﹣m+2)=4﹣m,2(4﹣m)=m2﹣m+2,
解得:第一個(gè)方程的解是m=0(舍去),m=4(舍去),第二個(gè)方程的解是m=4(舍去),m=﹣3,
m=﹣3時(shí),﹣m2+m﹣2=﹣14,
則P(﹣3,﹣14),
綜上所述,符合條件的點(diǎn)P為(2,1)或(5,﹣2)或(﹣3,﹣14),
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)函數(shù)的圖象如圖,給出以下結(jié)論:
①當(dāng)x=0時(shí),函數(shù)值最大;
②當(dāng)0<x<2時(shí),函數(shù)y隨x的增大而減小;
③存在0<x0<1,當(dāng)x=x0時(shí),函數(shù)值為0.
其中正確的結(jié)論是( )
A.①② B.①③ C.②③ D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本中有一道作業(yè)題:
有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.問加工成的正方形零件的邊長是多少mm?
小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問題.
(1)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長又分別為多少mm?請你計(jì)算.
(2)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4.
(1)畫出以矩形的兩條對稱軸為坐標(biāo)軸(x軸平行于AB)的平面直角坐標(biāo)系,并寫出點(diǎn)A,BC的中點(diǎn)E,DC的中點(diǎn)F的坐標(biāo);
(2)求過點(diǎn)A,E,F三點(diǎn)的拋物線的解析式,并寫出此拋物線的頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中,是勾股數(shù)的是( )
A. 1,2,3 B. 2,3,4 C. 1.5 ,2,2.5 D. 6,8,10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的面積為25x2+40xy+16y2(x>0,y>0),則表示該正方形的邊長的代數(shù)式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用求差法比較大小,就是根據(jù)兩數(shù)之差是正數(shù)、負(fù)數(shù)或0,判斷兩數(shù)大小關(guān)系的方法.若a>b,
m<n,試比較P = n+3a與Q = m+3b的大小關(guān)系為
A. P<Q B. P = Q C. P>Q D. P與Q的大小不確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com