【題目】(1)填空:如圖,我們知道,一條線段OA繞著它的一個端點O旋轉一周,另一個端點所形成的圖形叫做 ;一個矩形ABCD繞著它的邊AB旋轉一周所形成的圖形叫做 ;
(2)如圖,將一個直角三角形ABC(∠C=900)繞著它的直角邊AC旋轉一周,也能形成一個幾何圖形。
(a)在圖中畫出這個旋轉圖形的草圖,并說出它的名稱。
(b)如果ΔABC中AC=20,BC=15,把這個旋轉圖形沿著ΔABC的中位線DE且垂直于AC的方向橫截,得到一個什么樣的圖形?并請你計算所截圖形的上半部分的全面積。
【答案】(1)圓,圓柱 ;(2)(a)圓錐體;(b)150π.
【解析】
(1)線段繞一端點旋轉一周形成圓,矩形旋轉一周形成圓柱,
(2)(a)見詳解;(b)一個直角三角形繞著它的直角邊AC旋轉一周形成圓錐,截取后為圓臺,圓臺的面積等于側面積加上兩底面積.
(1)一條線段OA繞著它的一個端點O旋轉一周,另一個端點所形成的圖形叫做圓;一個矩形ABCD繞著它的邊AB旋轉一周所形成的圖形叫做圓柱;
(2)(a)直角三角形繞著它的直角邊AC旋轉一周形成圓錐
(b)將圓錐截取上班部分,形成圓臺,
∵AC=20,BC=15,
∴AB=25,
∵DE是中位線,
∴DE=7.5,AE=12.5
所截圖形的上半部分的全面積=
科目:初中數學 來源: 題型:
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.
(1)若某反比例函數的圖象的一個分支恰好經過點A,求這個反比例函數的解析式;
(2)若把含30°角的直角三角板繞點O按順時針方向旋轉后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結果保留π)
【答案】(1)反比例函數的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據tan30°=,求出AB,進而求出OA,得出A的坐標,設過A的雙曲線的解析式是y=,把A的坐標代入求出即可;(2)求出∠AOA′,根據扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點A的坐標為(3,3).
設反比例函數的解析式為y= (k≠0),
∴3=,∴k=9,則這個反比例函數的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
點睛:本題考查了勾股定理、待定系數法求函數解析式、特殊角的三角函數值、扇形的面積及等腰三角形的性質,本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關鍵.
【題型】解答題
【結束】
26
【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.
(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.
① 求證:△OCP∽△PDA;
② 若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,CE⊥BD于E,CF平分∠DCE與DB交于點F.
(1)求證:BF=BC;
(2)若AB=4cm,AD=3cm,求CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當AB=8,CE=2時,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格中,△ABC的三個頂點都在格點上,點A,B,C的坐標分別為(﹣2,4)、(﹣2,0)、(﹣4,1),將△ABC繞原點O旋轉180度得到△A1B1C1.平移△ABC得到△A2B2C2,使點A移動到點A2(0,2),結合所給的平面直角坐標系解答下列問題:
(1)請畫出△A1B1C1;
(2)請直接寫出B2的坐標 C2的坐標 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F分別是線段BC,AC的中點,連結EF.
(1)線段BE與AF的位置關系是 ,= .
(2)如圖2,當△CEF繞點C順時針旋轉a時(0°<a<180°),連結AF,BE,(1)中的結論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.
(3)如圖3,當△CEF繞點C順時針旋轉a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉角a的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D、E分別是邊AB、AC的中點,延長DE至F,使得AF∥CD,連接BF、CF.
(1)求證:四邊形AFCD是菱形;
(2)當AC=4,BC=3時,求BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小王在長江邊某瞭望臺D處測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為多少米?(結果精確到0.1,參考數據:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直徑為13的⊙E,經過原點O,并且與x軸、y軸分別交于A、B兩點,線段OA、OB(OA>OB)的長分別是方程x2+kx+60=0的兩根.
(1)OA:OB=____;
(2)若點C在劣弧OA上,連結BC交OA于D,當△BOC∽△BDA時,點D的坐標為______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com