【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,EF過點O且與AB、CD分別相交于點E、F,連接EC.
(1)求證:OE=OF;
(2)若EF⊥AC,平行四邊形ABCD的周長是22,求△BEC的周長.
【答案】(1)見解析;(2)11.
【解析】
(1)由已知條件證△DFO≌△BEO即可得到結論;
(2)由平行四邊形ABCD的周長為22可得AB+BC=11;由已知易得點O是AC的中點,結合EF⊥AC可得EF是AC的垂直平分線,由此可得AE=EC,從而可得△BEC的周長=BC+BE+EC=BC+BE+AE=BC+AB=11.
(1)∵四邊形ABCD是平行四邊形,
∴OD=OB,DC∥AB,
∴∠FDO=∠EBO,
在△DFO和△BEO中,
∠FDO=∠EBO,OD=OB,∠FOD=∠EOB,
∴△DFO≌△BEO(ASA),
∴OE=OF.
(2)∵四邊形ABCD是平行四邊形,
∴AB=CD,AD=BC,OA=OC.
∵EF⊥AC,
∴AE=CE.
∵平行四邊形ABCD的周長是22,即2(BC+AB)=22.
∴BC+AB=11,
∴△BEC的周長=BC+BE+CE=BC+BE+AE=BC+AB=11.
科目:初中數學 來源: 題型:
【題目】如圖,直線y=k1x(x≥0)與雙曲線y= (x>0)相交于點P(2,4).已知點A(4,0),B(0,3),連接AB,將Rt△AOB沿OP方向平移,使點O移動到點P,得到△A′PB′.過點A′作A′C∥y軸交雙曲線于點C,連接CP.
(1)求k1與k2的值;
(2)求直線PC的解析式;
(3)直接寫出線段AB掃過的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某校為了創(chuàng)建書香校園,去年購進一批圖書.經了解,科普書的單價比文學書的單價多4元,用12000元購進的科普書與用8000元購進的文學書本數相等.
(1)文學書和科普書的單價各多少錢?
(2)今年文學書和科普書的單價和去年相比保持不變,該校打算用10000元再購進一批文學書和科普書,問購進文學書550本后至多還能購進多少本科普書?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】密蘇里州圣路易斯拱門是座雄偉壯觀的拋物線形的建筑物,是美國最高的獨自挺立的紀念碑,如圖.拱門的地面寬度為200米,兩側距地面高150米處各有一個觀光窗,兩窗的水平距離為100米,求拱門的最大高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,定義點P(x,y)的變換點為P′(x+y,x﹣y).
(1)如圖1,如果⊙O的半徑為2 ,
①請你判斷M(2,0),N(﹣2,﹣1)兩個點的變換點與⊙O的位置關系;
②若點P在直線y=x+2上,點P的變換點P′在⊙O的內,求點P橫坐標的取值范圍.
(2)如圖2,如果⊙O的半徑為1,且P的變換點P′在直線y=﹣2x+6上,求點P與⊙O上任意一點距離的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠ADB=∠ADC,則不一定能使△ABD≌△ACD的條件是( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BAD=∠CAD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經過t秒,以點P為圓心, cm為半徑的圓與△ABC的邊相切(切點在邊上),請寫出t可取的一切值(單位:秒)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一只甲蟲在55的方格(每一格邊長為1)上沿著網格線運動,從A處出發(fā)去看望B、C、D處的甲蟲,規(guī)定:向上向右為正,向下向左為負.例如:從A到B記為:(+1,+3);從C到D 記為:(+1,-2),其中第一個數表示左右方向,第二個數表示上下方向.
(1)填空:記為( , ), 記為( , );
(2)若甲蟲的行走路線為:,請你計算甲蟲走過的路程.
(3)若這只甲蟲去Q的行走路線依次為:A→M(+2,+2),M→N(+2,-1),N→P(-2,+3),P→Q(-1,-2),請依次在圖2標出點M、N、P、Q的位置.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com