【題目】△ABC中,D、E分別為AB、AC的中點,若DE=4,AD=3,AE=2,則△ABC的周長為______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解一元二次方程x2+8x+7=0,則方程可化為( )
A.(x+4)2=9
B.(x﹣4)2=9
C.(x+8)2=23
D.(x﹣8)2=9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=﹣x2+1的圖象與x軸交于A、B兩點,與y軸交于點C,下列說法錯誤的是( 。.
A. 點C的坐標(biāo)是(0,1) B. 線段AB的長為2
C. △ABC是等腰直角三角形 D. 當(dāng)x>0時,y隨x增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=3(x﹣1)2+1的圖象上有三點A(4,y1),B(2,y2),C(﹣3,y3),則y1、y2、y3的大小關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對角線OB,AC相交于點D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過點E的反比例函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)四邊形的內(nèi)角和等于a,五邊形的外角和等于b,則a與b的關(guān)系是( 。
A. a>b B. a=b C. a<b D. b=a+180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)
一汽車租賃公司擁有某種型號的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金
x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:
x | 4500 | 4000 | 3800 | 3200 |
y | 70 | 80 | 84 | 96 |
(1)觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.
(2)已知租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元. 每輛車的月租金定為多少元時,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過坐標(biāo)原點,與軸的另一個交點為A(-2,0).
(1)求二次函數(shù)的解析式
(2)在拋物線上是否存在一點P,使△AOP的面積為3,若存在請求出點P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com